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Preface

The subject of this book is Padé-type Approximation to Fourier series.

The text begins with definition and properties of Padé and Padé-type approximation to
analytic functions. Padé approximants are rational functions whose expansion in ascending
powers of the variable coincides with the Taylor power series expansion of analytic functions into
a disk as far as possible, that is up to the sum of the degrees of the numerator and denominator.
The numerator and denominator of a Padé approximant are completely determined by this
condition and no freedom is left. Padé-type approximants are rational functions with an arbitrary
denominator, whose numerator is determined by the condition that the expansion of the Padé-type
approximant matches the Taylor power series expansions of analytic functions into a disk as far
as possible, that is up to the degree of the numerator. The great advantage of Padé-type
approximants over Padé approximants lies in the free choice of the poles which may lead to a

better approximation.

One would like to adapt the proofs of one variable to the several variable case, however
major obstacles and cumbersome formulas present themselves, making the applications almost
unattainable. Indeed, many arguments in one variable use the Taylor power series expansion of
analytic functions into the open disks. In several variables, the open polydisks do not enjoy a very
elevated status and the domains of convergence of the power series representations exhibit a
much greater variety than in one variable. In other words, the polydisk does not qualify to be the

general target domain because of the failure of the property to be the maximal domain of

convergence of a multiple power series. On the other hand, if 7 > 1, the ring P(C") of complex
analytic polynomials in C" is not principal and henceforth it is not an Euclidean ring. This means

that when n >1 there is no division process in P(C"), which, in particular, implies that the
cherished notion of continued fraction is absent from the theory of functions of several complex

variables. Furthermore, in contrast to the one variable setting, there is no facility in the
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management of a logical connection between two apparently related mathematical entities: the
polynomial of C" and its degree. Finally, the singularities of rational functions of two or more

complex variables are never isolated.

Since, because of all these reasons, many of the most highly appreciated theorems on

rational approximation have no obvious analogue in several complex variables, one might expect
that the theory of Padé and Padé-type approximants in C" lacks the appeal of the classical one

variable theory.

However, since 1976, there has been a great deal of work to determine the correct
analogue and the properties of Pad¢é and Padé-type approximants in dimensions exceeding two. In
1978, C. Brezinski was able to formulate the first definition of Padé-type approximants for double
series, and from that time most other definitions dealing with homogeneous sub-expressions in a
series extension were given. The papers “Padeé-type approximants in multivariables” (by S.
Arioka in Appl.Numer.Math.3(1987)497-511), “Padé-type approximants for double power
series” (by C. Brezinski in J. Indian Math.So0c.42(1978)267-282), “Padé and Padé-type
approximants in several variables”(by S. Kida in Appl.Numer.Math.6(1989/90)371-391) and “4
new  family of Padé-type  approximants in R (by P. Sablonniére in
J.Comput. Appl.Math.9(1983)347-359) give an overview of some of this work. In the paper
“Multivariate partial Newton-Padé and Newton-Padé-type approximants” (by J. Abouir and A.
Cuyt in J. Approx. Theory 72(1993)301-316), a general order definition was introduced that
contained all the previous ones as special cases and was inspired on the definition of a general
order multivariate Padé approximant as given by A. Cuyt in “Multivariate Padé approximants
revisited” (BIT 26(1986)71-79). In all these definitions, the corresponding multivariate Padé-type
approximation theory is based on Taylor series expansions on polydisks and leads to extremely

complicated computations, at least for n > 2.

It would be reasonable to guess that the outlet lies with the consideration of another type of

series representation for analytic functions. So, the principal aim of the present book is to propose
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a generalization of Padé and Padé-type approximation theory in one and several variables and to
show how the proofs of a multidimensional Padé and Padé-type approximation theory can be
cleared of their dependence on Taylor series and reconnected to original ideas of rational

approximation by means of the Fourier series theory.

For this purpose, in Chapter 1, we shall first recall basic facts on rational approximation
to the Taylor series representation of analytic functions. Then, by using the fundamental property
of real harmonic functions to be real parts of analytic functions, we will define Padé and Padé-

type approximants to the Fourier series expansion of a real-valued function u that is harmonic in
the open unit disk D . These approximants are real parts of rational functions of type (m, m+ 1) ,
that is, of rational functions with numerator of degree at most 7 and denominator with degree at

most m + 1. The crucial property is that the numerator and denominator of a Padé approximant

Re[m/m+1],
are uniquely determined by the condition that the Fourier series expansion of its restriction to any
circle C, of radius 7 <1 matches the Fourier series expansion of the restriction of u to C, up to

the J_r(2m+1)th —order’s Fourier term. On the other hand, the numerator of a Padé-type

approximant

Re(m/m+1),

is determined by the condition that the Fourier series expansion of its restriction to any circle C,
of radius 7 <1 matches the Fourier series expansion of the restriction of # to C, up to the
+m" —order’s Fourier term. Several numerical examples showing the efficiency of these

approximants will be given, and convergence results will be established.

Next, we shall construct Padé and Padé-type approximants to the Fourier series

representation of a complex-valued harmonic function in the open unit disk. The construction
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follows from a coordinate procedure, named composed approximation, and generalizes classical
rational approximation to analytic functions, in the sense that any classical Padé-type or Padé
approximant to an analytic function on the unit disk coincides with a composed Padé-type or Padé

approximant to this function.

With this background, we shall be in position to use the solution of the Dirichlet problem
in order to discuss the numerical evaluation of a 277 — periodic L” — function f on [— T, 7[], or
on the unit circle C', by using (composed) Padé-type approximants. The idea is to take

(composed) Padé-type approximation to the Poisson integral of the periodic function, and then
consider radial limits to approximate its Fourier series representation. Several numerical
examples will confirm the expectation that these radial limits —named (composed) Padé-type

approximants to the periodic function— may lead to satisfactory approximations. The
fundamental result is that the Fourier series expansion of a (composed) Padé-type approximant to

f matches the Fourier series expansion of f up to the & m" — order’s Fourier term.

The problem of convergence for a sequence of (composed) Padé-type approximants to a
27 — periodic L” — function is of considerable interest, and will therefore be extensively studied.
Especially, for p =2, we shall describe how this problem of convergence is connected with

Schur and Szeg0’s classical theories on orthogonal polynomials.

As an application, we shall see how Padé-type approximants to continuous 27 — periodic
real-valued functions may accelerate the convergence of functional sequences. More precisely,
we shall investigate the assumptions under which, for every sequence of functions converging to
a real-valued continuous 27 — periodic function on [— 7[,7[] , there is always a Padé-type
approximation sequence converging point-wise to that function faster than the first sequence. This

property permits us to construct better and better approximations to continuous functions.
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Finally, by using Padé-type approximants, we shall propose an alternative and direct

method for the numerical computation of derivatives and definite integrals.

In Chapter 2, we shall first consider interpolation methods for the numerical evaluation
of a 27 — periodic finite Baire measure 4 on [— 71',71'] or on the unit circle C. The idea will
again be to take (composed) Padé-type approximants to the Poisson integral of £, and then
consider radial limits —the so-called (composed) Padé-type approximants to f — to approximate
the Fourier series representation of g . The main property is that the Fourier series expansion of a

(composed) Padé-type approximant to 4 matches the Fourier series expansion of & up to the

h .
+ m"™ — order’s Fourier term.

Evidently, a serious and strong criterion for the successful application of such an
interpolation method is determined by the convergence behavior of the corresponding (composed)
Padé-type approximation sequence to the 27 — periodic finite Baire measure. So, the next main
purpose of this Chapter will be to prove concrete convergence results confirming the

computational efficiency of these interpolation methods.

We shall also obtain integral representation formulas for (composed) Padé-type
approximants to the Fourier series expansion of harmonic, analytic or L” — functions, and, in this
connection, we shall define and study (composed) Padé-type operators on the spaces of harmonic,

analytic or L” — functions. Application of these operators will furnish additional theoretical

convergence results.
Chapter 3 is devoted to multidimensional and abstract Padé-type approximation.

As in the one variable case, for complex dimensions greater than one, any rational
approximant depends on the choice of polynomials interpolating the Cauchy kernel. However,
from the point of view of integral representations, a major difference between both cases is

displayed. The difference is due to the fact that, in the one variable setting, there is essentially
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only one kernel —the Cauchy kernel — , while, in several variables, one has great freedom to

modify, by a basically algebraic procedure, the original potential theoretic kernels.

In 1950, S. Bergman introduced new integral representation for analytic functions. The
roots of his representation are based on abstract Hilbert space theory. The relevant abstract kernel
—the so-called Bergman kernel- can be defined quite easily for arbitrary domains, but it is

difficult to obtain concrete representations for it, except in special cases.

The first aim of Chapter 3 will be to define Padé-type approximation to functions that are

analytic and of class L* in Q, by interpolating the Bergman kernel function
K, (z,x) =K, (Z1 yees Z s Xy ,...,xn)
into an arbitrary open bounded open set Q2 in C”, instead of the Cauchy kernel
(I=x,z) " (1=xz )
into an open polydisk centered at the origin.
The Bergman kernel function K, (Z,x) belongs to the Hilbert space
0 }(Q)
of all functions that are analytic and of class L* in Q. For any orthonormal basis

{(pj ij= 0,1,...}

of O L’ (Q), the idea will be to replace the kernel K|, (Z, x) by simpler interpolating expressions

consisting of generalized polynomials

2,(%,2)=3c"(=)p,(¥),

Jj=0
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such that
gm(ﬂ-m,k’z)= Kﬁ(ﬂ-m,kaz)
forany 7, , ina finite set of pair-wise distinct points

Mm+l={7z T ...,ﬂm’m}CQ

m,0°%m,l°

with

M,, N UKer(/Tj =0.

0<j<m

Then, by using appropriate approximate formulas, we shall define generalized Padé-type

approximation to any f €O L (Q): the function

ﬁ: ajf) cﬁm)(z) c0 I’(Q)

Jj=0

will be a generalized Padé-type approximant to f*, with generating system

Mm+1 = {ﬂ-m,O ’ﬂ-m,l ""’ﬂ-m,m } .

()
J

0,1 j=012,.:

Here, a is the j” —order’s Fourier coefficient of f with respect to the basis

aﬁf):jf(p_jdV.
Q
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Indicative numerical examples involving generalized Padé-type approximants to analytic

L* — functions of two complex variables will be produced to show the efficiency of these

approximations.

As we shall see, under certain strong algebraic presuppositions on the generating system

choice, one can also define Padé-type approximation to the function f . In analogy with the one
variable setting, the crucial property is that the Fourier series expansion of a Padé-type
approximant to f matches the Fourier series expansion of f up to the * m™ — order’s Fourier

term. In fact, as we shall show, if

ij(»m’f)(Dj (Z)

=0
is the Fourier expansion of the Padé-type approximant to f € O r (Q) with respect to the basis

0, j=012,.],
then

pims) = o)

J J

forany j=0,2,...,m.

We shall also consider the natural extension of these ideas, based on abstract Hilbert
space theory, to the context of continuous functions on a compact subset of R", and, more

generally, to the elements of an arbitrary functional Hilbert space.

To do so, we shall first prove that a C” — function f on a compact subset £ of R”

satisfying Markov’s classical inequality (M ), or Markov’s inequality (M 2) with respect to

0
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some positive measure, has a Fourier series representation with respect to a Schauder basis
consisting of orthogonal polynomials. This will permit us to give the definition of a generalized

Padé-type approximant to the Fourier series representation of f . Error and global convergence
results for the asymptotic behaviour of a sequence of generalized Padé-type approximants to the
Fourier series of f will be demonstrated. Further, under certain strong algebraic presuppositions
on the generating system’s choice, one will can also define Padé-type approximants to the
function f . The crucial property will again be that the Fourier series expansion of a Padé-type
approximant to f matches the Fourier series expansion of f up to the * m™ — order’s Fourier

term.

Next, we shall propose an extension of these ideas into every functional Hilbert space H
consisting of functions defined into an arbitrary topological space X and with values into the
extended complex plane. Let (-/-), be the inner product of H . For any complete self-

summable orthonormal family

in H , the function

Ky(z:): X > Cxms Ky (z2.0)= e, (2)e, (x)

=0

belongs to H (z € X)), and each u € H has the Fourier expansion
u(x)=z<u/ej>H ej(z) (zeX).
j=0
Since
u(z) =T, (Kx(2,%)),
where T, is the linear functional 7, : E — C defined on the complex vector space £ that is

generated by all finite complex combinations of e_j ’s by
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7l 0)=ture)),

the function Ky (Z, x) has to be replaced by a simpler expression

G, (x,z)= i O'Em) (z)a;),

j=0
fulfilling
Gm(x,z):KX(z,ﬁm,k) forany k <m
in a finite set of pair-wise distinct points

M, ., = {ﬂ'm,o,ﬂ'm,l,...,ﬂ'm,m}c X—[ U Kere_j}

0<j<m

(Kere_j is the kernel of e_j ). Any function

7,(G, (x2) =Y /ey, ()

is a generalized Padé-type approximant of u € H with generating system M ;.

As we shall show, under certain strong algebraic presuppositions on the generating system
choice, one can also define Padé-type approximation to the function f . The characteristic
property of such an approximation is that the Fourier expansion of a Padé-type approximant to u
matches the Fourier expansion of u# up to the = m™ — order’s Fourier term, in the sense that

<T, (Gm (x,-))/ej >y =<ule,>,, forany j=0l,.,m.
Finally, after introducing representation for the generalized Padé-type approximants to
elements of H , we shall conclude with the definition and convergence investigation of

generalized Padé-type approximation to any linear operator

H—->H.
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As an application, we will then use generalized Padé-type approximants to the Bergman
projection operator to prove an extension of Painlevé’ s classical Theorem on the continuous
extension of analytic functions to the boundary of an arbitrary bounded open subset of C". Finally,

we shall consider some indicative numerical examples involving generalized Padé-type

approximants.

It gives me great pleasure to express my gratitude to the two persons who have had the
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supervised my dissertation.

Finally, I want to express my deepest appreciation to my family, who, for the past few
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Chapter 1

On the Numerical Evaluation of
Harmonic and 2n-Periodic L*-

Functions by a few of their

Fourier Coefficients

Summary

The numerical evaluation of a harmonic or 2z-periodic L’-function by its Fourier series representation may
become a difficult task whenever only a few coefficients of this series expansion are known or it converges too slowly.
In this Chapter, we will propose a general method to evaluate such any function by means of composed Padé and Padé-
type approximants. The definition and properties of these rational approximants will be given. After having done this
successfully, we will consider several concrete examples and will give theoretical applications to the convergence
acceleration problem of functional sequences. Finally, an alternative method for the numerical computation of
derivatives and definite integrals will be defined.

Introduction

In this Chapter we present Padé and Padé-type approximation to harmonic or
27 —periodic L” — functions. The text begins with a review of standard local results, followed

by a discussion of classical concepts on rational approximation related to the extension properties

of analytic functions in one complex variable. It then continues with a natural generalization to

the context of harmonic and L” — functions, and concludes with several applications.
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Padé-type approximation is the rational-function analogue of the Taylor polynomial
approximation to a power series. Before proceeding to a formal definition, let us recall a few facts

from elementary calculus and interpret these as results in approximation theory.

One of the strong motivations for studying rational approximations is the per-

ennial and concrete problem of representing functions efficiently by easily computed expressions.

In this capacity the rational functions

a,+ax+..+a,x"
m
by +bx+..+b,x

R(x) =

have been found to be extremely effective. In a loose manner of speaking, one may say that the

curve-fitting ability of R(x) is roughly equal to that of a polynomial of degree n + m . However,
we shall see that in competing with the polynomial of degree n +m, R(x) has an unsuspected
advantage in that the computation of R(x) for a given x does not require n+m additions,

n + m —1 multiplications, and one division as might be surmised at first. By transforming R(x)

into a continued fraction

(CF) R(x)=R(x)+ .
P(x)+ _
/P“)‘)+ % o

(in which each P, denotes a certain polynomial), we achieve the significant reduction in the

number of «long» arithmetic operations (multiplications and divisions) to n or m .

Theorem. Any rational function R(x) can be put into the continued fraction form (CF ), and

from this it can be evaluated for any x with at most max{n,m} long operations.
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Proof. Let the numerator and denominator be denoted by R, and R,, respectively. Let deg(-)
stand for degree of, and assume first that deg(RO)Z deg(R1 ) By successive division (of R,

by R;) we obtain quotients (), and remainders R, as follows:
Ry=RQ +R, (deg(R,)<deg(R)), R =R,0,+R, (deg(R,)<deg(R,)), etc.

Since the degrees deg(R j) form a decreasing sequence of nonnegative integers, we eventually

reach a step in which deg(Rk ) =0:

R, =R, 0, +R, (deg(Rk)= 0) and R, , =R, 0, .
From this schema, we have

R 1 1

R=—"=0+——=..=0,+ ] :
.. 1
0, + '+/Qk_1+ka

R, R, / R, 0, +
This can also be written in the equivalent form (CF ), each P, except P, being a monic

polynomial (i.e., P, has leading coefficient unity). The numerical evaluation of such a

polynomial requires no more than deg(P)—l multiplications, since it can be expressed in the
form

XA, T Ax+ Ay =+ A, Dx+ A, ) )x+ A,y

The long operations necessary to calculate R(x) from equation (CF ) are then the

multiplications for P, and k —1 divisions. The total number of these operations is

deg(P, )+ deg(P, )+ ...+ deg(P, ) = deg(Q, )+ deg(Q, ) +.. + deg(Q; )
= [deg(Ro ) —deg(R, )] + [deg(Rl )- deg(R2 )] oot [deg(Rk—l )_ deg(R, )]H
=deg(R,)<n.

ere we have wused the inequalities deg(Rj+1 ) < deg(R ; ) to  conclude that
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deg(R ; ) = deg(R 1 )+ deg(Q 41 ) Note that if Q, is monic, then the number of operations is at

most n—1.
Now, in the case that deg(RO ) < deg(R1 ), we write

__ G
R, /Ro ,

where ¢, is selected so that ¢,R, and R, have the same leading coefficient. The preceding
discussion now shows that ¢,R, /R, may be expressed as a continued fraction, any value of
which may be computed with no more than deg(R1 )—1 long operations. Hence, in this case the

evaluation of R requires at most deg(R1 ) < m long operations.

A few historical comments might now help to put matters in perspective. Our principal
sources of information are Brezinski’s precious papers: The long history of continued fractions
and Padé approximants (in “Padé approximation and its applications. Amsterdam 19807, M.G. de
Bruin and H. Van Rossum eds., Lectures Notes in Mathematics 888, Springer Verlag, Heidelberg,
1981), and The birth and early developments of Padé approximants (presented at the 86™ summer
meeting of the American Mathematical Society, Toronto, August 23-27, 1982).

The first use of continued fractions goes back to the algorithm of Euclid (¢.306 B.C.-c.
283 B.C.) for computing the g. c. d. of two positive integers which leads to a terminating
continued fraction. Euclid’s algorithm is related to the approximate simplification of ratios as it
was practiced by Archimedes (287 B.C.-212 B.C.) and Aristarchus of Samos (c.310 B.C.-¢.230
B.C.). Continued fractions were also implicitly used by Greek mathematicians, such as Theon of
Alexandria (c.365 B. C.), in methods for computing the side of a square with a given area.
Another very ancient problem which also leads to the early use of continued fractions is the

problem of the diophantine equations in honor to Diophantus (c.250 A.D.) who found a rational
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solution of the equation ax+by =c, where a,b and c are given positive integers. This
problem has been completely solved by the Indian mathematician Aryabhata (475-550), who
wrote down explicitly the continued fraction for a/ b . Around 1150, one of the most important

Indian mathematicians, Bhascara, wrote a book “L;'l;zvat_i”, where he treated the

equation ax —by = c. He proved that the solution can be obtained from the continued fraction

fora/b . He also showed that the convergents C, = A, /B, of this continued fraction satisfy:
A =q A4+ A, B =q, B +B,_, and 4B, ~4_ B, =(-D".

Then the solution is given by x=FcB, , +bt and y=FcA,  +at, according as a

B, —bA,  =*1.

In Europe, the birth place of continued fractions is the north of Italy. The first attempt for
a general definition of a continued fraction was made by Leonardo Fibonacci (c.1170-c. 1250). In
his book “Liber Abaci” (written in 1202, revised in 1228 but only published in 1857), he
introduced a kind of ascending continued fraction which is not of great interest. The first
mathematician who really used our modern infinite continued fractions was Rafael Bombielli
(1526-1572) the discoverer of imaginary numbers. In his book “L’ Algebra Opera”, published in
1579 in Bologna, he gave a recursive algorithm for extracting the square root of 13 which is

completely equivalent to the infinite continued fraction

4.4

NI3=34+—+—+...
6 o
. a1| a2| . .
(The notation b, + |— + |b_ + ... for the continued fraction
| 2
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e

has been introduced in 1898 by Alfred Pringsheim (1850-1941)). The next and most important
contribution to the theory of continued fractions is by Pietro Antonio Cataldi (1548-1626) who
can be considered as the real founded of the theory. In his book “Trattato del modo brevissimo di
trovare la radice quadra delli numeri...” published in Bologna in 1613, he followed the same

method as Bombielli for extracting the square root and he was the first to introduce a symbolism

for continued fractions. He computed the continued fraction for/18 up to the 15™ convergent

and proved that the convergents are alternatively greater and smaller than \/ﬁ and that they
converge to it. The words “continued fractions” were invented in 1655, by the English
mathematician John Wallis (1616-1703), in his book “Arithmetica Infinitorum”, where the author
gave for the first time our modern recurrence relationship for the convergents of a continued
fraction. We also mention the Dutch mathematician and astronomer Christiaan Huygens (1629-
1695) who built, in 1682, an automatic planetarium. He used continued fractions for this purpose

as described in his book “Descriptio automati planetari” published after his death.

The major contribution to the theory of continued fractions is due to Leonhard Euler
(1707-1783). In his first paper on the subject, dated 1737, he proved that every rational number
can be developed into a terminating continued fraction, that an irrational number gives rise to an
infinite continued fraction and that a periodic continued fraction is the root of a quadratic

. . . e+l e-1 . . N
equation. He also gave the continued fractions for e,—,T by integrating the Riccatti

e—1
equation by two different methods. Apart from the convergence of these continued fractions
which he did not treated, Euler proved the irrationality of e and e”. Euler’s celebrated book

“Introductio in analysis infinitorum”, published in Lausanne in 1748, contains the first extensive

and systematic exposition of the theory of continued fractions. In chapter 18, he gives the
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N A . .
recurrence relationship for the convergents C, = B—k of the continued fraction
k
a,| a
b, + |?1| + |b_2| + ... and then shows how to transform a continued fraction into a series
1 2
o 0a..a
c,-C,_, =ED" st kit g
B] Bn
This leads to the relation
- a,...a
C=by+ ) ()" ==,
n=1 Bn—an

Reciprocally, Euler shows that an infinite series can be transformed into a continued fraction

>evte, = 9
_ 2
- 1+ . C.C
_ . n-2%n
/jl Gt %H_I—C,ﬁ...

After some examples, he treats the case of a power series. Then, he comes to the problem of

convergence showing how to compute the value of the periodic continued fraction
1| 1 . 1 )

C=—+4—+... by writing C =——which gives C~ +2C =1 and thusC =2 -1. From
2 |2 2+C

this example he derives Bombielli’ s method for the continued fraction expansion of the square

root and a general method for the solution of a quadratic equation. The chapter ends with Euclid’s

algorithm and the simplification of fractions with examples.

Euler published some papers where he applied continued fractions to the solution of

Riccatti’ s differential equation and to the calculation of integrals. He also showed that certain
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continued fractions derived from power series can converge outside the domain of convergence of

the series. In a letter dated 1743 and in a paper published in 1762, Euler investigated the problem

of finding the integers a for which a” +1 is divisible by a given prime of the form 4n+1=p*+¢°.

Its solution involves the penultimate convergence of the continued fraction for£ . In 1765, Euler
q

studied the Pellian equation x° = D y2 +1. He developed +/D into a continued fraction. In

1771, Euler applied continued fractions to the approximate determination of the geometric mean

o . %

of two numbers whose ratio is as— . The method can be used to get approximate values of x” 7.
x

In 1773, Euler used continued fractions to find x and y making mx* —n y2 minimum, and in

1780 for seeking f and g such that f7> —gs® =x. In 1783, Euler proved that the value of

m+1
m+2
AJF A+

is a rational number, when m is an integer not smaller than 2 .

the continued fraction

Thus, Euler was the first mathematician not only to give a clear exposition of continued
fractions but also to use them extensively to solve various problems. He was quite familiar to the
process of transforming a power series into a continued fraction. His method for performing this
transformation is simply the division process which is quite similar to Euclid’s algorithm for
obtaining the g. c. d. of two positive integers. He used this technique in, at least, two papers (: one
in 1775 and another in 1776), and he was led to use rational approximations to power series
which are, in fact, Padé approximants. In a letter to Christian Goldbach (1690-1764), dated

October 17, 1730, Euler considers the series
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1 x° Ix3 x° Ix3x5 x’
S(x)=x+ —+ —+ —
2%x3b 2x4x5bh 2x4x6x7 b

where b is the diameter of a circle, x is the chord and S the corresponding arc. He gives, without
any explanations, the following approximations of S (x)
60b>x —17x° 840h°x” —122x°

and

60b> —27x° 120b% (42> - 25x%)

It is easy to check that the first approximation satisfies S (x)+ O(x7) and thus is identified with
the Padé approximant [3/2](x). The second approximation satisfies S(x)+ O(x9) and thus is

identified with [S/Z]S (x) Another important source about Euler’s work on rational

approximation is its correspondence with the German astronomer Tobias Mayer (1723-1762). On

July 27, 1751, Euler answered to Mayer’s question on the solvability of the differential equation

1
dy = dx by showing that the series
log x

Y(x) = —Ux[l=1xU +1x2xU* =1x2x3xU° +...+ (=)' vIxU" +...]

(with logx = U ) satisfies this equation. In order to determine the values of this series, Euler

wrote that the series
SU)=1-1xU +1x2xU* =1x2x3xU* + ...+ (-1)"vIxU" +...

is equal to the following continuous fraction
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1
U
U
2U
2U
33U
1+ 3l.]
1+ -

SU) =
1+

1+

1+
1+
1+

This fraction always closely determines the limits of S (U )’s value, and thus one can

approximate to the value of S (U ) as closely as one will. Then the values approximating to S (U )

arc:

1 1+U 1+3U 1+5U +2U°? 1+8U +11U*

1+U 142U 1+4U +2U% 1+ 6U +6U> " 1+9U +18U% +6U >’
1+11U +26U° + 6U°
1+12U +36U% +24U° "

of which every alternate one is greater than S . It is easy to check that the rational fractions given

by Euler are the Padé approximants

/ol @) o @) ik @) /2] W), [2/2] W), [2/3]s W), [3/3]s (V) ete.

It must be noticed that Padé approximants can also be found in a letter, dated September

16/27, 1740, of an unknown English mathematician Georges Anderson to William Jones (1675-
1749), where Anderson considered Padé approximants to log(l + x) and he went one step farther

that Euler since he gave the first term of the error. About the same time, Daniel Bernoulli (1700-

1782) used similar rational fractions in order to invert the power series

y=x+ax’ +bx’ +...
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He wants to express x in terms of . He first writes x as a power series in y. The method of

indeterminate coefficients gives
x=y—ay’ +(2a’ -b)y’ +...

On the other hand, one has

lzlx+£x2 +2x3 +...
Yy y Yy

By using his famous method of finding the smallest zero of an infinite power series (published in

two memoirs in 1730) applied to difference equations of infinite order, he obtains the sequence

1 2a b
,—3+—2+—,...

11 a
yy 'y y

.,0,0,1, —,

1
y y?

The ratio of two consecutive terms of this sequence gives an approximate value for x. For

example, he has

‘= y+3ay® +(a’ +2b)y’ +cy? .
1+4ay+3(a’> +b)y* +(2ab+c)y’ +dy*

Thus, x is approximated by a rational fraction in y. If this rational fraction is developed into an

ascending power series in y (by effecting the division), it matches the series obtained from the
indeterminate coefficients method up to the term whose degree equals the degree of the
numerator. This kind of approximation is weaker than Padé approximation whose degree of
approximation is equal to the sum of the degrees of the numerator and the denominator of the

rational fraction. Such approximations are now called Padé-type approximations.

However, neither Euler nor Anderson and D. Bernoulli and Johann Heinrich Lambert

(1728-1777) (who also gave a direct approach to Padé approximants in his paper “Observationes
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variae in Mathesin puram”, published in 1758 in Acta Helvetica) can be credited with the
discovery of Padé approximants (or of Padé-type approximants), since they were not aware of
their fundamental property of matching the series up to the term whose degree is equal to the sum
of the degrees of the numerator and of the denominator (or respectively, of their fundamental

property of matching the series up to the term whose degree equals the degree of the numerator).

The first mathematician to be conscious of this property was Joseph Louis Lagrange
(1736-1813) in a paper dated 1776 and dealing with the solution of differential equations by
means of continued fractions. Transforming the convergents of these continued fractions into
rational fractions by using their recurrence relationship he claims that they match the series “up fo
the power of x inclusively which is the sum of the highest powers of x in the numerator and in the
denominator”. As it is noticed by Brezinski, this paper is really the birth-certificate of Padé

approximants.

Many other important contributions to the theory of continued fractions are due to
Lagrange. In 1766, he gave the first proof that x> = D y2 +1 has integral solutions with y # 0,
if D is a given positive integer not a square. The proof makes use of the continued fraction
for\/B . In 1767, Lagrange published a “Mémoire sur la résolution des équations numériques”,

where he gave a method for approximating the real roots of an equation by continued fractions.

One year later he wrote an “Addition” to the preceding “Mémoire”, where he proved the converse
of Euler’s result. He showed that the continued fraction for \/B is periodic and that the period
can only take two different forms which he exhibited. He related his results to the solution
ofx>=Dy*+1. In the same paper he extended Huygens’ method for solving
pPYy—¢qx=r. An interesting problem treated by Lagrange in 1772 is the solution of linear

difference equations with constant coefficients. In 1774, in an addition to Euler’s Algebra,

Lagrange proved that if a is a given positive real number then relatively prime integers p and ¢

can be found such that p—qa <r—sa for r < p and s < q by taking p/q as any convergent
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of the continued fraction for a in which all the terms are positive. He also gave a method, using

continued fractions, to solve 4y> —2Byz+Cz* =1 in integers and he proved that Pell’s

equation cannot be solved by use of a continued fraction for \/5 in which the signs of the partial

denominators are arbitrarily chosen.

Following these predecessors many mathematicians of the nineteenth century became
interested by continued fractions. All those who worked on the transformation of a formal power
series into a continued fraction, by using for example the division process, have in fact obtained
Padé approximants since, in most of the cases, the division process leads to the continued fraction

corresponding to the power series whose successive convergents are
[0/0] [0/1] [1/1] [1/2] [2/2]....

As the history of Padé approximants is very much interlaced with that of continued
fractions we shall not follow that way and we shall only look now at the direct approaches to
Padé approximants that do not make use of continued fractions. However we would like to
mention one more contribution of that type since it opened a very important new chapter in
mathematics. In his very celebrated paper on Gaussian quadrature methods, presented to the

Gottingen Society on September 16, 1814, Carl Friedrich Gauss (1777-1855) proved that

a0 2x2/3x5
,1 3><3/5><7
X - -1
x —_—

The convergents of this continued fraction are the Padé approximants of the series. The
denominators of the convergents are the Legendre orthogonal polynomials as proved by Pafnouty

Lvovitch Tchebycheff (1821-1894).
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In a paper published in 1837, but dating from November 1834, Ernst Eduard Kummer

(1810-1893) made use of Padé approximants for summing slowly convergent series. Kummer
writes exactly the equations defining the [n /n+ 1] Padé approximant, he gives several examples,

but he does not prove any theoretical result.

In 1845, Carl Gustav Jacobi (1804-1851) proved his celebrated formula for Padé
approximants. In the same paper, he gives several representations for the numerators and the
denominators of Padé approximants, all derived as special cases of interpolating rational fractions
studied by Augustin Louis Cauchy (1789-1857). Jacobi’s representations are based on the

systems of linear equations defining the Padé approximants.

Georg Friedrich Bernhard Riemann (1826-1866) proved in October 1863 the
convergence of the corresponding continued fraction given by Gauss for the ratio of two
hypergeometric series. The proof was found in Riemann’s papers after his death. It uses
integration in the complex domain, and it was completed and edited by Hermann Amandus
Schwarz (1843-1921). According to Henri Eugeéne Padé (1863-1953), this is the first proof of

convergence for Padé approximants.

In his thesis dated 1870, Georg Ferdinand Frobenius (1849-1917) showed that the

numerators, the denominators and the errors of the convergents of the continued fraction

Cx)= | 1
agx —
%lx_%zx—".

are related by three terms recurrence relationships. These results were extended in a paper
published in 1881 where he gave the relations linking the numerators and the denominators of
three adjacent approximants in the Padé table. Some of these identities, now known as the
Frobenius identities, are connected with Jacobi’s determinant formulas for the coefficients of the

continued fraction
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X,
a, + . :
a, + .
a2+/ .
a, + .

The successive convergents of this fraction form the main diagonal of the Padé table. A recursive
method for computing a,,a,,a,,... is given by Frobenius who, in fact, gave the first systematic

study of Padé approximants and placed their theory on a rigorous basis.

Numerous contributions to Padé approximants are also due to Edmond Nicolas Laguerre

- . n 18 1rst paper 0 , € treats the cases
1843-1886 I hi fi f 1876 h h

-1
(x> =1) A,(x+ a)m/(x+b)m and e’ where p(x) is a polynomial. In his second note of

1876, he studies exp(Arc tan xil) and in 1879, he works out the case of the series

1,23
X .X2 X3 x4

o0

He shows the convergence of the sequence {[k/ k]: k €Ny} to ex.[eftfldt , and he also treats

X

the case

J.e”zdt :
In 1881, Leopold Kronecker (1823-1891) considered the problem of finding a rational
fraction p(x)/ q(x) having the same derivative at a given point that a given function f (x) He
used two techniques for solving this problem. The first one is the Euclidean division algorithm for

finding the continued fraction expansion of g(x)/ f(x). The second method is to solve the
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system of linear equations obtained by imposing that the first coefficients of the power series

expansion of f ¢ — g p vanish.

At the same year (1881), in his Inaugural Dissertation, Karl Heun presented the

connection between orthogonal polynomials, continued fractions and Padé approximants. Let

{p, (x): v €Ny} be a family of orthogonal polynomials on the closed interval [a,b] with respect

to a measure d y that is

B
[P @p)dux) =0 Gt v k).

These polynomials satisfy a tree terms recurrence relationship
p,=Ax+B,)p, ,(x)-C,p, ,(x),v=0.

Let us consider the continued fraction

|
Ax+B - & c
A,x+B,— 73 C
i8Sy g

R, (x)

) of this fraction are the Padé approximants [O / 1], [1 / 2],... .Then
X

The convergents

\4

S,(x) =/Cy p, (x), where C, :kady(x).

It has been proved in 1896 by Andrei Andrevitch Markov (1856-1922) that if x is an arbitrary

point in the complex plane cut along [a, b] , then
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R b
lim, S—Ex; - C12 /7C0C2 e d,U(t),
v x -

and that the convergence is uniform on every compact set in the complex plane having no point in
common with [a,b] . Markov’s result is a consequence of Stieltjes’ s Theorem on the convergence

of Gaussian quadrature methods.

Another important contribution I would like to mention is that of Charles Hermite (1822-
1901). The first reason for that choice is that he was Padé’ s advisor, the second reason is that he
defined the approximants which are now called the Padé -Hermite approximants. The third reason
is that he proved the fundamental result that the number e is a transcendental number and that the

proof used Padé approximants. Hermite’ s Proof is a follows. e is assumed to be an algebraic

number, that is satisfying a, + a,e +...+ a,e" = 0for some integers a,,4a,,...,a,. Hermite looks

for  the  polynomials Q(x),PO(x),...,P (x), of  degree k, such that

n

e”Q(x)—P.(x): O(x("“)k“) for j =0,1,2,...,n. Then

J
T(x)=Ya,P,(x)-0(x)) a,e” =0(x"""").
j=0 =0
Since |T (1)| <1 and is an integer for k sufficiently large, it follows that
T()=>a,P(1)=0.
j=0
Giving to k the values k,k +1,...,k +n, Hermite proves that a, +a,e+...+a,e” #0 which
contradicts the assumption. This last part of the proof was quite long and difficult and, in a letter

to C.A. Borchardt, Hermite declines to enter on a similar research for the number 7. This last step

was to be passed by Carl Louis Ferdinand von Lindemann (1852-1939), who, in 1882, proved
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that 7 is a transcendental number thus ending by a negative answer a question opened for more
than 2000 years! The idea of the proof, which uses Padé approximants, is as follows. If
r,s,t,...,z are distinct real or complex algebraic numbers and if a,b,c,...,n, are real or complex
algebraic  numbers, at least one of which differing from zero, then
ae” +be’ +ce' +...+ne* #0. But, e” +1=0 and in the preceding result a=bh=1 and
c=..=n=0; s=0 is algebraic; » =iz is the only cause why e'” +1=0. Since i is

algebraic, thus i 7 is transcendental and it follows that 7 is also transcendental.

In his thesis “Sur la représentation approchée d’ une fonction par des fractions
rationelles”, which was presented at the Sorbonne in Paris on June 21, 1892 with the jury:
Charles Hermite (Chairman and Advisor), Paul Appell (1855-1930) and Charles Emile Picard
(1856-1941), Henri Padé (1863-1953) gave a systematical study of the Padé approximants. He
classified them, arranged them in the Padé table and investigated the different types of continued
fractions whose convergents form a descending staircase or a diagonal in the table. He studied the
exponential function in details and showed that its Padé approximants are identical with the
rational approximants obtained by Gaston Jean Darboux (1842-1917) in 1876 for the same
function. He showed that

[n+k/m), (1) :icjtj +t*[n/m], (),

where f(t):co+clt+czt2+... and g(t):ck+ck+1t+ck+2t2+..., and studied the

connection between the two halves of the table. Padé also investigated quite carefully what is now

called the block structure of the Padé table.

Using a result given by Jacques Hadamard (1865-1963) in his thesis, Robert Fernand
Bernard Viscount de Montessus de Ballore (1870-1937) gave, in 1902, his celebrated result on

the convergence of the sequence {[n/ k] ; :n €Ny} where [ is a series having £ poles and no
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other singularities in a given circle C. Hadamard’s results were extended in 1905 by Paul Dienes

(1882-1952). This allowed R. Wilson to investigate in 1927 the behavior of {[n/ k]f :n €Ny}

upon the circle C and at the included poles.

In 1903, Edward Burr Van Vleck (1863-1943) undertook to extend Stieltjes’ theory to

1 2
x+b — 4 u
x+b; = %+b3 ="

where the a,’s are arbitrary positive numbers and the b,’s are arbitrary real numbers. He

continued fractions

connected these continued fractions with Stieltjes’ type definite integrals with the range of
integration taken over the entire real axis. He also extended Stieltjes’ theory to Padé table. The
name Padé table has been used for the first time by Van Vleck. In 1914, Hilbert’s theory of
infinite matrices and bounded quadratic forms in infinitely many variables was used by Ernst

Hellinger (1883-1950) and Otto Toeplitz (1881-1940) to connect integrals of the form

B0

(—oo<a<b<+mo)
x—t

a

with the continued fractions considered by Van Vleck. The same year J. Grommer extended these
results to more general cases where the range of integration is the entire real axis. The complete
theory was obtained by Hellinger in 1922 using Hilbert’s theory of infinite linear systems. The
same goal was reached by several other mathematicians (Rolf Hermann Nevanlinna, Torsten
Carleman and Marcel Riesz) at about the same time by different methods. Using the results by
Van Vleck, Hubert Stanley Wall (1902-1971), in his thesis dated 1927 under Van Vleck’s
direction, gave a complete analysis of the convergence behavior of the forward diagonal

sequences of the Padé table derived from a Stieltjes series, i.e. whose coefficients are given by
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tdut),

Cj:

S8

with & bounded and non-decreasing in [0,+oo]. In 1931 and 1932 he extended these results to

the cases where the range of integration is [a,b] with —o<a<b<+o or with

—o<a<b<+o.

The researches on rational approximations during the second part of the twentieth century
are mostly devoted to their connection with the theory of orthogonal polynomials and
convergence acceleration methods. Since 1965, a growing interest for Padé approximants
appeared in theoretical physics, chemistry, electronics, numerical analysis, ... Several
international conferences were organized (for example DE BRUIN, M.G. and VAN ROSSUM,
H.: Padé approximation and its applications. Amsterdam 1980, Lectures Notes in Mathematics
888, Springer Verlag, Heidelberg, 1981; SAFF, E.B. and VARGA, R.S.: Padé and rational
approximation, Academic Press, New-York, 1977, WUYTACK, L.: Padé approximation and its
applications, Lectures Notes in Mathematics 765, Springer Verlag, Heidelberg, 1979) and several
books were written (for example: BAKER, G.A.jr.: Essentials of Padé approximants, Academic
Press, New York, 1975; BAKER, G.A. jr. and GRAVES-MORRIS, P.R.: Padé aprpoximants,
Vols 1 and 2, Encyclopedia of Mathematics and its Applications, Vols. 13 and 14, Addison
Wesley, Reading, Mass., 1981; BREZINSKI, C.: Padé-type approximation and general
orthogonal polynomials, ISNM, Vol. 50, Birskhiduser Verglag, Basel, 1980).

Surely, one the most fundamental and inspired contemporary programs about rational
approximation has been that initiated by Claude Brezinski, who was able to extend the notion of
Padé approximation by inventing the general theory of Padé-type approximants. Before entering

into an explicit outline of his theory in Section 1.1, let us understand Brezinski’ s motivation. Let

f be a formal power series. Padé approximants are rational functions whose expansion in

ascending powers of the variable coincides with f as far as possible, that is, up to the sum of the
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degrees of the numerator and denominator. The numerator and the denominator of a Padé
approximant are completely determined by this condition and thus, no freedom is left. If some
poles of f* are known, it can be interesting to use this information. Padé-type approximants are
rational functions with an arbitrary denominator, whose numerator is determined by the condition
that the expansion of the Padé-type approximant matches the series f as far as possible, that is,

up to the degree of the numerator. It is also possible to choose some of the zeros of the
denominator of the Padé-type approximants (instead of all) and then determine the others and the
numerator in order to match the series f as far as possible. Such approximants, intermediate
between Padé and Padé-type approximants, have been called higher order Padé-type
approximants. Padé approximants are a particular case of Padé-type approximants. The great
advantage of Padé-type approximants over Padé approximants lies in the free choice of the poles

which may lead to a better approximation.

The main open question on Padé-type approximants is the “best” choice of the poles.
Some attempts to solve this difficult problem for some particular cases have been made by
Alphonse Magnus. Recently, the problem is mostly solved in [49]. Another question connected
with the choice of the poles is the convergence of Padé-type approximants. A sufficient answer to
this question was given by Michael Eiermann. Several extensions of Brezinski’ s ideas are of

interest and they are proposed by J. Van Iseghem, A. Draux and M. Prévost.

One would like to adapt the simple proofs of one variable to the several variables case,
however major obstacles present themselves. First, the local representation of a function analytic
into a domain in C" by its Taylor series may lead to extremely complicated and difficult
computations. Second, the polydisk does not qualify to be the general target domain because of
the failure of the property to be the maximal domain of convergence of a multiple power series.

Finally, there is no division process in P(C"), when n > 1.
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It is reasonable to suspect that the outlet lies with the consideration of another type of
series representation for functions. So, the first Chapter of the present book deals with Padé-type

(and Padé) approximation to the Fourier series expansion of a harmonic function on the open unit
disk D and to the Fourier series expansion of a 277 — periodic L — function on [— 7[,71'] or on

the unit circle C.

To give an introductory and brief sketch for the central idea of the Chapter, suppose, for
instance, f (t) is a 27 — periodic real-valued L” — function in [— 7Z',72'], with a sequence of

Fourier coefficients

e, :v=0x122,..}.

It is clear that f (t)can be identified with a real-valued function u(z) in L? of the unit circle C,

by setting u(e” ) =f (t) Define the Poisson integral of u(e”) by

u, (t)=u(re") :2L Iu(ei‘g)R(t—ﬁ)dQ (0<r<l,—-z<t<n),
r

-

where {P ()} is the Poisson kernel in the unit disk. From the solution of the Dirichlet problem in

r

the unit disk D, it follows that the extended real-valued function u(z) = u(r e”) 1s harmonic in

the open unit disk and such that

=0.

P

lim

u, (1) —u(e")

r—l

Further, the Fourier series expansion of the restriction u,(t) of u(re”) to any circle C, of

radius 7 <1 is given by
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LM
VI ivt
E c,rile’ .

V=—0

As we shall show in Section 1.2, the Padé-type approximants Re(m/ m+ l)u (Z) to the harmonic
function u(z) exist and are harmonic real-valued functions in D , such that if the Fourier series

expansion of the restriction Re(m/m+l) (t) of such a Padé-type approximant

u,

Re(m/m+1), (r e”) to the circle of radius r <1 is

Zdim)r‘v‘eivt,
V=—00
then, for any v = 0,+1,#2,....#m , it holds d\™ = c, . Since the radial limit

lim, ,, Re(m/m+1), (¢)

r—l

is uniform on [— T, 7[], the function
Re(m/m+1),(z)

is the Poisson integral of a continuous function on the unit circle. This function

Re(m/m+1),(e") =lim,_, Re(m/m+1), () (-z<t<n)

r—l

is a Padé-type approximant to f° (t), in the sense that its Fourier series representation

o0

Zd‘fm)eivt

V=—0
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matches the Fourier series expansion of f (t) up to the + m" — order’s Fourier term. One

can also define the Padé approximants Re[m/ m +1] O to f (t), with Fourier series
representation of Re[m/ m +1] (¢) matching the Fourier series expansion of f (t) up to the

+ (2m +1)" —order’s Fourier term.

The theoretical study and efficiency of all these approximants constitutes the main
purpose of Section 1.3. Paragraph 1.3.1 deals with preparatory material about Dirichlet’s
problem. The detailed definition and properties for Padé-type and Padé approximants to

27 — periodic real- or complex-valued L’ — functions on the interval [— 7z,7r] or on the unit

circle C are presented in Paragraph 1.3.2. Paragraph 1.3.3 investigates the convergence
behavior of a sequence of Padé-type approximants, as well as their connection with Schur and

Szegd’s theories.

Previously, Section 1.1, recalls basic properties of Padé-type and Padé approximation to

analytic functions of D, while Section 1.2 is devoted to the definition, study and examples of

Padé-type and Padé approximants to harmonic functions in D .

In Paragraph 1.4.1 of Section 1.4, several numerical examples are considered making use
of Padé-type approximants to 27 — periodic L’ — functions in [— 7[,7[], In Paragraph 1.4.2, we
study the assumptions under which, for every sequence of functions converging to a real-valued
continuous 27 — periodic function on [— 7[,7[], there is a Padé-type approximation sequence

converging point-wise to that function faster than the first sequence. Finally, in Paragraph 1.4.3,
we propose an approximate direct method for the numerical computation of derivatives and

definite integrals.
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1.1. Rational Approximation to Analytic Functions

1.1.1 Linearized Rational Interpolation and Padé-type Approximants

Interpolating and approximating an analytic function by polynomials or rational functions
with prescribed poles is rather well understood and has been studied in great detail by Walsh in
[144]. Interpolation by rational functions with pre-assigned poles leads to a theory very similar to
that of polynomial interpolation. A rather different situation arises if one considers interpolation
by rational functions with free poles. The theoretical background of rational interpolation with
free poles is very similar to that of Padé approximants. Actually, Padé approximants are a special

type of rational interpolators with all its interpolation points identical.

By f we denote the function which will be interpolated. In the sequel, it is assumed that
this function is analytic into the open unit disk D . By P,(C) and R,,.(C) we denote the sets of all

complex polynomials of degree at most # and the set of rational functions of numerator and

denominator degree at most m and 7, respectively.

Let an infinite triangular matrix of interpolation points 7, , € D (called interpolation

scheme) be given:

Each row

Mm = {”m,O’ ”m,l""’ ﬂ'm,m}
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of the matrix M defines an interpolation set with m +1 interpolation points. Tt is not excluded

that some or all points are identical. With each interpolation set M, a polynomial

Vo) =] [, (rec—{oh)

is associated.

Definition 1.1.1.(a). 4 rational function 1, , €R,,,(C) is called rational interpolator of type

(m,n) to the function [ at the m+ n +1 interpolation points of the set M, . ,if

f - rm,n = O(Vm+n

) ateach w, . . €M, .
(b). A rational function

r =P c R, (C), with p, €P,(C), q, €PAC)and g #0,

m,n
n

is called a linearized rational interpolator (or multi-point Padé approximant) of type (m,n) to

the function f at the m+ n+1 interpolation points of the set M, , ., if

qnf_pm = O(V ) at each ﬂm+n,k € Mm+n .

m+n

Definition 1.1.1.(a) implies that at each zero of the polynomial V, (x) the interpolation

error f —r, , has a zero of at least the same order. Thus, the interpolator 7, , and its derivatives

(r )(j ) coincide with the function f and its derivatives f () at the point zeM .

m,n

up to an

n
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order determined by the frequency of z in M, , . Definition 1.1.1.(a) therefore defines
interpolation in the Hermite’s sense. Further, the linearized version in Definition 1.1.1.(b) of a

rational interpolator 7, , always exists. Indeed, relation g, f — p,, = O(V ) is equivalent to a

m+n
system of m+n+1 linear homogenous equations for the m+mn+2 unknown parameters

(coefficients) in the two polynomials p, and g, . Hence, a non-trivial solution always exists, and

it is not difficult to verify that for such a solution g, =0 is impossible.

However, as the next example will show, the existence of a rational interpolator is in

general not guaranteed. If, for m €N, n €N, a rational function 7, , exists that interpolates f,

then one says that the Cauchy interpolation problem is solvable ([104). It is easily verified by
comparing two potential candidates that if the interpolation problem is solvable, then the solution

is unique.

Example. We choose m=n=1,M, = {— 1,0,1} , and as function to be interpolated f (z) =z’

Any rational function 7, € R, ;(C) is either a M6ebius transform or a constant. If 7, is a Méebius

transform, then it is univalent in C and therefore cannot interpolate the value 1 at the two

different points —1 and 1. If 7, is a constant function, then it cannot interpolate the two

different values 0 and 1. Hence, already in this very simple situation, a rational interpolator to the

function f (Z) =z does not exist.

Comparison of rational interpolation with interpolation by polynomials shows that the
main reason for the non-existence in case of rational interpolators is caused by the non-linearity
of the interpolators’ parametrization. The first one who mentioned the possibility of non-existence
of rational interpolators was Kronecker ([88]). An excellent survey about the solvability of the

Cauchy interpolation problem is contained in [104]. There a unified approach to the analysis of
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the problem is given, which includes elements from the theory of continued fractions, and special
matrices and determinants which have been introduced in connection with the interpolation
problem, are discussed there. Efficient numerical algorithms that can be applied also in the

presence of interpolation defects are discussed in [73].

In what follows, we will give the precise form for rational interpolators of type

(m,m+1).

As already mentioned earlier, Padé¢ approximants are a special type of rational

interpolators with all its interpolation points identical, that is 7,,,,=...= 7., yin - 1, In
particular, the m +m +1 interpolation points in Definition 1.1.1 are equal to the origin, that is if
Toino == ., =0, then a Padé approximant [m/ n] ; to f is arational fraction whose

numerator has the exact degree m and whose denominator has the exact degree n such that its

power series agrees with that of f* as far as possible:

flz)- [m/n]f (z)= O(z"”””) at 0.

If [m/ n] |, exists, then it is unique (apart from a multiplying factor). We shall look for a natural

generalization of Padé approximation.

Definition 1.1.3. 4 rational function (m/ n) k (Z) €R,,.(C) is called a Padeé-type approximant to

the function f if

flz)- (m/n)f (z)= O(z'”“) at 0.
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There is a good reason for this somewhat strange terminology. According to Definition
1.1.3, Padé-type approximants are rational functions with an arbitrary denominator, whose
numerator is determined by the condition that the expansion of the Padé-type approximant
matches the power series expansion of f as far as possible that is up to the degree of the
numerator. On the other hand, Padé approximants are also rational functions whose expansion in
ascending powers of the variable coincides with the Taylor expansion of fup to the sum of the
degrees of the numerator and denominator. Thus, numerator and denominator of a Padé
approximant are completely determined by this condition and no freedom is left. The great
advantage of Padé-type approximants over Padé approximants lies in the free choice of the

denominator which may lead to a better approximation.

The chief reference on Padé-type approximation is Brezinski’ s book [21]. One may also
consult [19], [20], [22], [23] and [24].

Let us now see how to construct Padé-type approximants.

We denote the power series expansion of the analytic function f around 0 by
f(z)zZOtlff)z" (ZEDC>|Z| <l).
v=0

If P(C) is the vector space of all complex analytic polynomials with coefficients in C, we define

the linear functional 7' Y :P(C) — C associated with f, which satisfies
T,(x)=al” (v=012,.).

For the set of all functions complex analytic in an open neighborhood of a given planar set ) we
shall make use of the notation & Q). The following result is a consequence of Cauchy’s integral
formula. Two versions of this result in the case of several variables can be found in [38] and [40].
The proof is similar except for the fact that here we also need to consider the Fréchet space &XC).

This consideration is essential and its consequences will be appearing in the sequel.
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Theorem 1.1.4.(a). There is a linear continuous extension of T o on XC).

(b).There is a linear continuous extension of T ,on @(B ).

Proof. Let {rn 7 =0,1,2,...} be a sequence of positive numbers such that », <1 and let

K, =1z eG:|z| <r 'V If

p(x) =Y Bx" €P(C)
v=0

then there holds
j
T, (p))| =T, QBN = |2 BT, o,
v=0 v=0
B 9, (S) VACIR QI
:E% 7nI 27usjr 221/3
<sup_, sup,_,. - )‘ =sup_, SUp,.x,

for any 7n. In the last equality we have used the maximum modulus principle for analytic

functions.

(a). If the sequence {rn n= 0,1,2,...} is strictly decreasing with lim, ,_», =0, it is clear that
the sets K, form an exhaustive sequence of compacts in C and then the Hahn-Banach Theorem
extends 7 to a linear continuous functional of @ (C) when considered with the usual topology of

uniform convergence on the compact subsets of C.

(b). By density, if lim _,_r» =1, then, there is a continuous linear extension of T,on @(D)
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The first consequence of this Theorem is described in the following

Corollary 1.1.5. For every z € D, the number T} ((l - xz)fl) is well defined and equals | (Z)

Proof. Let z € D . By Theorem 1.1.4, the number
-]
T f ((l - xz) )
is well defined (:T  acts on the variable x € B and z € D is regarded as a parameter). The

continuity of 7, implies

f(z)= iagf 2V = in (x")z" = in ') =T, (i ¥z =T, (1= x2)").

A second consequence of Theorem 1.1.4 is that the functional 7 has a linear continuous

extension into the space #M(C) of meromorphic functions in C. In fact, we have #(C)=C (C, S),
where C (C, S%) is the space of continuous mappings from C into the Riemann sphere S*. Since S
is a metric space with respect to the chordal distance, we can consider in C (C,S?) the topology of
uniform convergence on compact subsets of C. When restricted to the subspace (XC) of C (C, S?),
this topology actually coincides with the usual topology of ©(C). More precisely, a sequence
{fn n= 0,1,2,...} e C(C, S is said to converge normally to a function F: C—>S* if

O'( | F ) — 0 as n — oo uniformly on compact subsets of C, where o is the chordal distance in

S?. The crucial property is that C (C,S?) is a Fréchet space when considered with the topology of

normal convergence. Moreover, if all the f are analytic and F' # oo, then F €O(C) and
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f, = F in the topology of &(C). The Hahn-Banach Theorem combined now with Theorem

1.1.4.(a) shows immediately that

Corollary 1.1.6. There is a continuous linear extension of T ; into C (C, $H.

Next, suppose again
M = (ﬂ-mak )mZ0,0SkSm
is an infinite triangular interpolation matrix with 7, , € D. With each row
M, = {ﬂm’o,ﬂm’l,...,ﬂm’m}

a polynomial
Van@ =y (x=m,,) (rec-{0})
k=0

is associated.

Let m > 0 be fixed. For any fixed z €C— {ﬂ;}k ck=0,1,..,m}, let Qm(x,z) denote the

unique polynomial of degree at most m which interpolates (l - xz)_1 in the m +1 nodes of the

th .
m-rowM, of M,i.e.

0,7, 0.2)= (-7, 2] (k=012,.,m).

If some of the nodes 7, , coincide the interpolation has to be understood in the Hermite sense.

Obviously, the expression
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Vm+1 (X) - Vm+1(z))

X—Zz

W (z)= Tf(

is a polynomial in z of degree at most m (here the functional 7', acts on the variable x and z

is taken as a parameter. By using the partial fraction decomposition of

one obtains

_ @

T - * D)
Vm+l (Z)

f (Qm (.X, Z))

with

Wi(z)=z"W (z")and V,  =2z""V (z7).

+1

Since W,(z) and V,  (z) are two polynomials in z with degrees at most m and m+1 ,
respectively, we see that 7 f(Qm (x,z)) is a rational function in z of type (m,m +1), which

means that it has a numerator with degree at most m and a denominator with degree at most

m +1. The basic property is that

Theorem 1.1.7.

foranyz € D , and therefore

*

W, (2)
Vr;:+1 (Z) .
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One can also construct Padé-type approximants with various degrees in numerators. For

all n =1,2,3,..., the Taylor power series expansion of f (Z) can be rewritten as
n—-1 n—1 ©
f(z)= Zaif’z“ +2'f.(2) = Zaif)zv +ana§,;l)czv . zeD .
v=0 v=0 v=0

Clearly, the rational function

n—

al’z" + T, (Qm (x, z))

I
(=]

is the type (m+n,m+1). Its denominator is again given by V  (z)=z""V . (z"") and
therefore, it has poles in the inverse nodes 7Z';:k (k = O,l,2,...m). As before, it can be shown
that
Theorem 1.1.8.

n—1

f@ =22 +T,(0,(x2) =0(""), for ze D,

v=0

and therefore

(m+n/m+1),(z) = {"iaﬁf)zv +T, (0, (x,2)).

For later use, we shall say that (m/ m+1)f and (m+n/ m+1)f are two Padé-type

approximants to f with generating polynomial V. ;(x).
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The main open question on Padé-type approximants is the “best” choice of the poles that

is the “best” choice of the generating polynomials’ roots 7, ,. Some attempts to solve this
difficult problem for some particular cases have been made by Magnus in [103]. In [49], we have

determined the “best” choice of points 7, , = 7, ,(2), 7, , = 7, (2)s0r 7T, ,, = 7T, () for the

interpolation system 7, ,,7 7z, in the sense that the corresponding Hermite polynomial

m,0°“m,1° Y m,m>

s .o . . . . .
0, (x,z) minimizes point-wise in z the absolute error

f(2)=(m/m+1),(2)

,(f €0D))

into the ring 0 < |Z| < 1,and, on the other hand, we have showed that if m =even, the same as
above choice constitutes also the “best” L* — choice, in the sense that it minimizes the I’ —norm

12

Hf(z)—(m/m+1)f(z)ujg = jf(z)—(m/m+1)f(z)\2dz

5<|z|<e

of the error into an arbitrary half-open ring A(O;&,g):: {z eC:o S|Z| <6‘},With

0 <0 < & <1, over the subset of all Hermite polynomials Q, (x,z), that is

|7 @) =mim+1),2)].° =min, f@=mim+1) (2. f coD)

m,0 a”m,l ’“"”m,m

In both cases, the interpolation polynomial Q:; (x,z) has the form:
. m—1
0,(x,2)=.2'x"+x" (z#0,x€0),
v=0

and the interpolation points 72';’0 = 72':;’0 (Z),...,ﬂ';’m = ﬂ;,m (z) are the (m + 1) roots of the

generating polynomial
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* * 1
Vo (x)E(Z)Vm+1 (x) = X" ;(Zm —Dx".

Further, if m = even , the Hermite polynomial Q, (x,z)is the unique interpolation polynomial
of degree at most m which minimizes the number

12
1

1-sz

2
-0, (s,z)| dsdz

5<|z]<e 1‘
\S\=;

and satisfies

1-s2z

| j( ! —Qx&njw&=o (0<S<e<r<l).
5S‘Z‘<€M 1

r

In spite of these results, there is no analogous possibility to determine a “best” uniform choice for

the interpolation system 7, ,7 7. ., since a minimum for the uniform norm

m,22°°*2"" m,m>

f(@)=(m/m+1),(2)] (f€0D))

lr @~ @nim+1), @[ =sup, .,

of the error on a compact ring A(0;9,¢) is obtained at the limit points
m, =0 (k=0l..,m-i) and 7, =0V =m—i+1..,m)

for any i=0,1,2,...,m+1. In particular, among these choice, the only feasible optimal

interpolation system is given by
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Let us now turn to the investigation of a precise form for rational interpolators of type

(m/m—i—l)f .

Theorem 1.1.9. Suppose
=0.

Tomatmet = ometmez = o = T opmit 2me1

Set
Uy (X) = Q(x ~ i) and . (2):=2""u,,, (7).
(). If
B = € Rypa(C)
u

m+1

is a linearized rational interpolator to the analytic function f at the 2m+2 interpolation points of

the set M, .., then r, . is a Padé-type approximant (m/ m+1)f to f with generating
polynomial u,,, (x).

(b). Conversely, a Padeé-type approximant (m/ m+1)f to [ with generating polynomial
Un+1(x) is a linearized rational interpolator L~ €Rum1(C) to [ at the 2m+ 2 interpolation

points of the set M, .., if

J L ﬁ(l—Sﬂm,k)ds=0 (j=0,12,.,m)
-

2m+3
s k=0(k#)

for some r <1.

Proof- (a). Since each of the functions
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Z= Tk

1 =274
is of modulus 1 on the unit circle, we see that

Z—T
2melk -1
1 <le ‘Z(Z _”2m+1,k)‘ 2 ‘Z _ﬂ-2m+1,k‘
= Z i1k

forany z€ D and k£ =0,1,2,...,m. It follows that

m
2m+2 -1
Z | I(Z _7[2m+1,k1 2
k=0

2m+1
| I (Z ~omai ) -
k=0

If 7, 0= uq*'" €R,,ma(C) is a linearized rational interpolator to f at the 2m + 2 points of

m+1

M then

2m+1 2

1,.(2)f(2) = 4,(2)| _ C— 1, (2)f(2) = q,(2)

2mt2 -1
H(Z_ﬂ-ZmH,k) ‘Z H(Z _7[2m+1,k)‘

<C=>

k=0 k=0

,,,(2)/(2) = 4,,(2)

1 *
Zm+ um+1 (Z)

m+1
z

<C=|f(@)-7,,.(2)|<C

forany z € D and some constant C. By Definition 1.1.3, the rational function 7, is a Padé-

type approximant to f* with generating polynomial u,,,, (x)

(b).The error of the Padé-type approximation to f* with generating polynomial
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is given by

f(z)—(m/m+l)f(z)= . T,

um+l(z) 1—'X2
sz+2 i
— T ( xm+v+lu (x)Zvj
* f 1
um+1(Z) v=0 "

2m+2 0
= Z* T (Zx’"*"“z,ﬂx z ]

f
Z’lerl (Z) v=0
22m+2 i i (f)
= pa -
u:n+1(Z) o o FEmt v+

sy [Ir(Zﬁ j L) 4y

j=0

S ) L

2miu, ., (2) =0

|s]=r

2 ), y
27zzu (Z)-[ m+2 1, (s™) Zszds

m+1

2m+2

z I f(s)u’”“(s_l)ds, (z € D)

27, (2) 1, 8" (1= s2)
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for some » < 1. Obviously, forany k = m+1,m+2,....2m +1, there holds

f(”2m+1,k) = (m/m + l)f (”2m+1,k )’

and (m/m +1)f interpolates [~ at 77,, ., 0575, 1150 Byt i

f(s)ﬁ (' = 2ps)

m+2
| s|=r (1 ST ym+1 j)

forany j=0,,...,m

f(s)H( Ty

& J ds =0 forany j=0,,..,m

m+2

= (1 S”2m+1])

= J fzfniz H l-s7,,., k)is = forany j=0,1,..,m

k=0(k#j)

which completes the Proof of the Theorem.

A more general result is still missing. However, because of the above Theorem, in the
present work we are not really concerned with properties of rational interpolators; our primary

interest in this Section will be the definition of Padé and Padé-type approximants to harmonic
functions in the unit disk D and tol” —functions on the unit circle C (or on the
interval [— 7r,7z] ). The convergence behavior of these approximants will also be of our interest,

and, in this direction, the ingredient key will be the understanding of the solution to the

corresponding problem in the analytic function case.
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1.1.2. The Convergence Problem

If the numerator and denominator’s degrees of the Padé-type approximants grow, then the
questions arise whether and where the approximants converge to the function that has been
approximated. Orientation for answers can be obtained from convergence results proved for Padé
approximants. There compact (i.e., locally uniform) convergence has been proved for certain
classes of functions. In the present Paragraph, we first discuss corresponding results for rational
interpolation. In comparison to later topics, we shall do this in a rather compressed and
summarizing form. The discussion is followed by a study of the convergence problem of Padé-
type approximants. In all cases our interest is restricted to diagonal or close-to-diagonal
sequences of interpolators and approximants, i.e., interpolators and approximants with numerator

degree m equal or almost equal to the denominator’s degree.

In the convergence theory of Padé-type approximants functions of the form

dp(x)

F@)= I X—z
with 4 a positive measure supported on R play a prominent role. They are known as Markov,
Stieltjes, or Hamburger functions, depending on whether sup p(y) is compact, contained in one
of the two half-axis (— oo,O] or [0,+oo), or unbounded and intersecting with both sets (— oo,O]
and [0,+oo), respectively. Diagonal Padé approximants developed at infinity to functions F, (z)
converge compactly (,i.e., locally uniformly) in the domain Cc- W In case of Stieltjes or

Hamburger functions it is necessary in addition that the moment problem associated with the

measure 4 is determinate ([4]).

Analogous results for rational interpolators to functions £, (Z) have been proved in [66],

[67], [98], [99], [100], [101] and [135].
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If g,, is the denominator polynomial of the Padé approximant [m/ m] - to a function F,
developed at infinity, then the polynomial ¢, is orthogonal with respect to the measure
([135]). The denominator polynomial ¢, is characterized by this orthogonality property up to a

constant factor. A similar characterization of the denominator holds in case of a rational

interpolator rm,m(z) to F’ ﬂ(z), however, now the denominator polynomial is orthogonal with

respect to a weighted orthogonality relation:

d
[x"q,( YD) _ 0 for v = 0,2, m—1,
Vam (%)
where V,,, (x) is the polynomial
2m—1

(x =75, 14 ) ([135]).

k=0

Thus, g,, is orthogonal with respect to the weighted measure Vz_”:d,u. In nearly all respects the

convergence theory of rational interpolators to functions F ., 1s a direct generalization of that of

Padé approximants. In both cases, the convergence domain is 6—Sup p(u), and for the

interpolation error the asymptotic estimate

timsup, |7, ()1, ()" <expl-[ g, (zx)da, () (@35)

sup p(u)

holds for z e@—supp (u), where g (z,x) is the Green function of the domain

sup p(u)

C —supp(u) and where da,, () is the asymptotic distribution of the matrix M, that is the

probability measure which satisfies
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m

limm_m( ! Z%,k)wM

m+1i2
with respect to the weak topology in the space of Borel measures (0, _1s the Dirac measure at

7, )- Under certain conditions the above estimate is sharp.

Another class of functions, for which compact convergence of Padé approximants has

been proved, are the Polya frequency functions

. Hj(l+ajz)
O 1457

where y,a;,; 20 and

Z,(“j +ﬂj)< .

It has been shown in [3] that diagonal Padé approximants to these functions converge compactly
in C— {~a;'.~a;',....., B, B,...} In [6] this result has been extended to rational interpolators
with interpolation matrices that contain only real entries 7, , and the functions G can have only
finitely many factors in their definition. The general problem is still open.

From counterexamples involving Padé approximants, we know that the analyticity of the
function f is not sufficient for guaranteeing compact convergence of rational interpolators. In
[142] it has been shown that it is possible to construct an entire function such that the diagonal
sequence of its Padé approximants developed at the origin diverges at each point of c- {0}

Thus, this counterexample underlines that in the convergence results for the classes of functions

F; and G the special structure of these functions is crucial.
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Having the difficulties with compact convergence in mind, it is certainly interesting to
realize that convergence can be proved for large classes of functions, which are defined mainly by
analyticity properties, if a weaker type of convergence is considered. Especially successful has

proved convergence in capacity.

By cap(-) we denote the (logarithmic) capacity of (capacitable) subsets of C (for a
definition see [90], [135] and [139]). For any Borel set B CC, we have dA(B)< 7z cap®(B),

where d/I(-) denotes the planar Lebesgue measure. This inequality shows that sets that are small
in capacity are also small in planar Lebesgue measure. A sequence of

functions f, (m = 0,1,2,...) is said to converge in capacity to f in the disk D, if for every

£ > 0 and every compact set £ < D we have
lim, ., cap({z € E:| £,(2) - f(2) > £}) = 0.

The first result about convergence in capacity and Padé approximation was proved in
[120] after preparations in [112]. In [143] the Nuttall-Pommerenke Theorem has been extended to

rational interpolators:

Theorem 1.1.10. Let the function f be analytic (and single-valued) in the domain D — K with

K a compact set of cap(K ) = 0 and such that

Kﬁ{ze@:zeMm,meN}=@,

and let r, . be the linearized rational interpolator to the function f in the points of the set

M,,,. Then, for every compact set E — D and every& > 0, we have

lim , cap{zeE: ‘rm,m (z2)— f(z)‘ >e"=0.
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It follows that the sequence of rational interpolators 7, , (m = 1,2,...) converges in

capacity to f in D. (But even more, we see that the convergence speed is faster than geometric

with possible exceptions on sets that become small in capacity as m — 0.)

In [143], the Nuttall-Pommerenke Theorem has been proved not only for the diagonal

sequence {7, , :m €N}, but also for arbitrary sectorial sequences, i.e., for sequences

{r,,-meN, neN} witha 4 >0 such that

m

1
A< Szasm,n—ﬂxx.

n

The assumption cap(K ) =0 is essential for the Proof of Theorem 1.1.10. In [102] and

[122] it has been shown by counterexamples that if the function f has a set of singularity of
positive capacity, then convergence in capacity can no longer be guaranteed for diagonal Padé

approximants in any sub-domain of D.

All meromorphic functions [ satisfy the assumptions of Theorem 1.1.10, but the
functions covered by the theorem form a much larger class. For instance, the functions f may
have essential singularities as long as there are not too many of them. Of course, any entire

function is covered by Theorem 1.1.10.

In [105] it has been shown that convergence in capacity implies point-wise convergence
quasi everywhere for appropriately chosen infinite subsequences. In analogy to the notion “almost
everywhere”, a property is said to hold “quasi everywhere” on a set S if it holds for every z €S

with possible exceptions on sets of outer capacity zero.

Especially for rational interpolators which are Padé-type approximants to a function

f€eo© (D), there are some general and sufficient conditions determining the compact

convergence in D .
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The first result in this direction can be viewed as a consequence of results due to Wimp

[145] by using Newton’s relations between the coefficients and the zeroes of a polynomial:

Proposition 1.1.11. Let {7Z'k k= 0,1,2,...} be a sequence of numbers in D and let

v, 0= 7] [e-7)

be the generating polynomial of the Padé-type approximant (m +n/m +l)f(z) to a function
feo(D).
A sufficient condition to hold
lim, ,,(m+n/m+1),(z)= f(z) in D (n=12,.)

is the convergence of the series

o0
zr, .
k_inD.

k=01—Z7Z'k

Let us give a second particular result:

Proposition 1.1.12. ([145]) Let {ﬂ'k k= 0,1,2,...} be a sequence of negative numbers in D

converging to 0 and let
Va0 = [ J(x=7)
k=0

be the generating polynomial of the Padé-type approximant (m +n/m +1)f(z) to a function

S eaD).
Forany ze DN [0,1], there holds

lim, ., (m+n/m+1),(z) = f(z) (n=12,.).
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The application of summability methods is a classical tool of analytic continuation and in

this connection we are going to prove a very general result:

Theorem 1.1.13. If the generating polynomials
Vm+1(x) = }/H(‘x - ﬂ.m,k)
k=0

satisfy
_ Vm+1 (x? — 0
Vm+1(Z_ )

compactly in an open set @ < C* containing Cx {0}, then

lim, , (m/m+1),(z) = f(2)
compactly in {z € D :({,z) € w, for any |§| <1}

lim

This result was first proved by Eiermann in [55] and in case of several complex variables

in [38].

Suppose we start with a sequence
N(Z) = (O-’"»k (Z))mZO,OSkSm

of complex-valued functions in D, and let
m k
{t(2) = Zam,k (Z)Zalff)z‘/ :zeD and m=0,1,2,...}
k=0 v=0

be the N(Z)—transform of the sequence of the partial sums of f around 0. Consider the

sequence of functions of two complex variables:
m k
d, (x,z)= Zam’k (Z)ZXVZV :(x,z) eC’and m =0,1,2,...},
k=0 v=0

and define a)(N) to be an open subset of C* into which this sequence converges compactly to

(1=xz) ",
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With these definitions we can state the following:

Theorem 1.1.14. If a)(N)CGX{O}, then for any f € D) the N(Z)—transform of the

sequence of the partial sums of f around 0 convergesto f (Z) compactly on

g(@(N(2)):={z € D:({.z) € o(N), for any || < 1}.

This Theorem constitutes a generalized form of Okada Theorem (see [55], [62], [37],
[38], [19] and [51].

As a consequence, we can immediately prove Theorem 1.1.13. Indeed, if we choose the

sequence N(z) in such a way to have d,, (x, Z) =0, (x, Z) for any m , then

6(2) =T, (d, (x.2)) = T,(Q, (x.2) = (m/m +1),(2)
and it is enough to show that the open set @ cC? into which the sequence

V. (xWV ! (z):m=012,.} converges compactly to 0, is contained in a)(N) cC?, the set

into which the sequence {Qm (x,z): m = 01,2,...} converges compactly to (l - xz)_l. Since

1 V,o.(x
_Qm(sz): m 1(_? ,
1—xz l—xzV, ,(z7)
the assumption that
lim, ,, g
Vm+l(Z_ )

compactly guarantees that

lim, . O, (x,z)=0- xz)™

(and conversely). This proves Theorem 1.1.13.
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The Proof of Theorem 1.1.14 requires the following Lemma.

Lemma 1.1.15. Let D, be open disk centered at 0 and with radius r and let K cc D, cc D.

Suppose the functions d,, (x,z) are continuous in the set
[bD,]"' x K = {(x‘l,z): x| =r,z e K}.

If f €A D),thenforall m there holds

f@-T,(d,x2)s4 swp, o[-0 =d,(0.2)

SupzeK

b

where the constant £ depends only on f and r , but is independent of m and K .

Assuming the Lemma for a moment, let us prove Theorem 1.1.14.

Proof of Theorem 1.1.14. Let f € & D). 1t is sufficient to show that for every z° € g(a)(N))

there exists a closed disk A(z°, p°) centered at z° and with radius p° such that

A(z° p°) < g(o(N))

and

m—>0

lim, ,, 7,(d,(x,2)) = f(z) uniformly on A(z° p°) < g(w(N)).

We must distinguish two cases:
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Let z°#0. Since g(w(N)) is open, one can find a p°>0 such that

W c g(a)(N)) . By the definition of g(@(N)), the compact set
{(x,2) GGZ:|x| <1,z e A(z°%p°)}
is contained in the open set a)(N) It follows that there is a £ > 0 with
{(x,2) eC:|x| <1,z e A(z°, p°) Y= w(N).
Since A(ZO—,po) c g(w(N)) < D, there holds
&= dist|{ € D:|&] = max[1 - e,sup___,.|2[1}.6D]> 0.

By defining » =1-¢', we see that the Lemma 1.1.15 can be applied to the disk D, and the

compact set K = A(z°, p°) ; and thus the desired conclusion follows.

Let now z° = 0. Choose r > 0 so that the closed disk Er , with center 0 and radius 7,

is contained in D . By assumption, the compact set
{(x,0) eC|x| < r}
is contained in the open set @(N). Hence,

{(x,2) ECZ:|x| <r,

Z|SZ'}

for a suitably small chosen 7 > 0. It is obvious that the Lemma 1.1.15 can be applied to the open

disk D, and the compact set K = A(0, p°), where
0<p' < min{r,r}

and the Proof of Theorem 1.1.14 is complete.
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Proof of Lemma 1.1.15. The Proof is a direct consequence of Cauchy’s Integral Formula. 1f
f € ©(D), then, by Corollary 1.1.5, we have

f@-T,(d,(x.2)| = |7, ((1-x2)" - d, (x.2))

=|r, 1 J (I_SZ)_ldS—L _[ dm(s,z)ds

27 S—X 27 S—X

(60,1 (607"

1 s 1
= |— T _d 9 d
27 J- f{l—xs_lj[l—sz (s Z)} *

(o, 1!
-1 -1 -1
<L SUP, _up 1 ‘s f(s lsupse[bDV],1 ‘(l -sz)" —d, (s,z)‘
-1
<* SUP, _up 1 ‘(1 -sz)" —d, (s, z)‘.

Consequently,

S@=T,(d, () <grsup, i |0-52)" = d, (5.2)

supst

which completes the Proof of the Lemma.

Remark 1.1.16. In the Proof of Theorem 1.1.14, we have used the property that g(@(N)) is an
open subset of D. To see this, we may proceed as follows: Since @(N) D Cx {0}, the set

g(w(N)) contains 0 and therefore it is not empty. Now, fix z° € g(@w(N)). Since ®(N) is a

not void open set in C?, for any ¢ € D there are 8(4’) >0 and 5(4’) >0 with (&,2) € ®(N)
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whenever |§—§ | <¢g(g) and |z—z°| <0(¢). The set D being compact, we can choose

&,8,,...8, € D such that

D < [JA. ().
By defining
s =min{o(¢;): j=12,..,J},

we get A(z°%5) < g(w(N)), and hence we have proved that g(@w(N)) is an open subset of D .

1.2. Approximate Quadrature Formulas for Harmonic

Functions
1.2.1. Composed Padé-type Approximation

We begin with the definition of composed Padé-type approximants to a harmonic

function u = u, +iu, in the unit disk D . Without loss of generality, we shall always assume

that #(0)=0.

Suppose the restriction to the circle of radius 7 <1 of each real-valued harmonic
function u; has the Fourier representation
u, (re”): 2Re(20'§j)rvei”tJ (z=re'~r<t<rmj=12),
v=0
and define the linear functionals

T, :P(C)>Cx >0 (j=12),

where P(C) is the vector space of all complex analytic polynomials.
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Lemma 1.2.1. Each functional T, extends to a linear continuous functional on the vector space
J

@(3) of all functions analytic in an open neighborhood of D Moreover, there holds
-1 .
u(z)=2ReT, (1-x2)") (d<Lj=12.

Proof. Each u; is the real part of an analytic function, or u; = f; + f; where f;is analytic in

D.If
f@=Yal:".
v=0
then
u,(z) = 2Re(f,(2)) = 2Re(ia§j)zvj.
v=0
Of course, O'y ) = alfj ) for v >0. Application of Cauchy’s Integral Formula shows

now that

T, (p(0)] < 7) " sup,_ | /() sup,, [ p(5)
for every p(x) €P(C) and r < 1. By density, there is a continuous extension of Tu/_ into 3) In

particular, for every fixed point z € D, the number 7, ((l - xz)_l) is well defined and equals

io.(j)zv )
v=0 '
Hence,
u;(z) = 2Re(20‘§j)zvj = 2Re];j ((l —-xz)” —1)
v=0

for any z € D . The Proof’is complete.
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. -1 . . .
If the function (l—xz) is replaced by a polynomial pj(x,z), then u j(z) is
approximated by 2ReT, (p;(x,z)), and therefore the function u(z) is approximated by the

expression

2ReT, (pi(x,2))+i2ReT, (p,(x,2)).

This is an approximate quadrature formula and leads to a composed Padé-type approximant to the

harmonic function u (Z)

More precisely, suppose, for each j =1,2,

M = (ﬂ(_/)

m,k )mZ0,0SkSm

is any infinite triangular interpolation matrix with ﬁfn’ ) e D. If QY (x,z) denotes the unique
Lagrange-Hermite polynomial of degree at most m that interpolates (l —xz)f1 in the (m +l)

nodes of the m” row of MY (i.e., Q;j)(ﬂ'(j) Z)= (1 - 7[}51’3(2)_1 , for k =0,1,2,...,m), then

m, k>

Definition 1.2.2. The complex-valued function

(m/m+1),(z) = 2ReT, (0" (x,2))+ i2ReT, (0P (x,2))

is called a composed Padé-type approximant to u(Z) The polynomials

VO () = [ [le=22) and V2@ = 1, [ [ - 72) (7.7, <C—{0h)
k=0

k=0

are called the generating polynomials of this approximation.

HELLENIC ARMS CONTROL CENTER PUBLISHING
published on line as an e-book in 2007
www.armscontrol.info




PADE-TYPE APPROXIMATION TO FOURIER SERIES N.J.DARAS

Remark 1.2.3. If u(O) # 0, then

(m/m+1),(z) = 2ReT, (0 (x2)}2ReT, (0 (x,2))-u(0).

Now, put
V()= 2 W =T, (P -V -2)

m+l
and

Wy (z) = "W (27
(j =12). It is readily seen that

Theorem 1.2.4.(a).(m/m+1),(z) is a complex-valued harmonic function in D, with

coordinates the real parts of rational functions of type (m,m + 1) :

1 (2)
(m/m+l)u(z)=2ReTu(Wm ") o )j+i2ReTu2(Wm *(2) (Z)I(Z)j

(b). The error of such an approximation equals

(m/m+1),(z)—u(z)

1 e I 1 Vih(x)
:2R |:V(1)( —l)Tul( 1 1 +12Re V(z) ]; 1 .
m+1 XZ — m+1 (Z Xz _1

Proof: 1t is well known that the general Hermite interpolation polynomial can be deduced from

the Lagrange polynomial by continuity arguments when some points coincide. We can therefore

)

m,0°

Pl sl

m,12° mm

assume that the pointsz are distinct and that QY'(x,z) is the Lagrange

polynomial of degree at most m which interpolates (1 — xz)_1 in the (m + 1) distinct nodes of the

HELLENIC ARMS CONTROL CENTER PUBLISHING

70 published on line as an e-book in 2007

www.armscontrol.info




N.J.DARAS PADE-TYPE APPROXIMATION TO FOURIER SERIES

m" tow of MY). We remind that the Lagrange polynomial of (l—xz)_1 at

xX= ﬂ;’é,ﬂ;’f, 72'(’) is given by
o e -rEl-2] 1
Q (.X' Z) Z ) ) 1— 72.(])
S ey
By using the definition of W”(lj ) , we obtain
) m WW(IJ)(”(J) 1 & W(j)(il'(j)) 1
T, (Qr(nj)(x’z)) > 70, 3 T O
Sn)am =i Sen) e om

This is the partial fraction decomposition of

WO
Vunzy

which completes the Proof of (a). To prove(b) it suffices to observe that, for any z € D, we have

Hence

2Reﬂ,j(QLj)(x,Z))—uj(z)=2Re(W”('j)*(Z) v s )j 2ReTuj((1—xz)‘1)

ord L (PR@) KA, /((x_z_l)_l)_Tul_((l_xz)_l)]

-1 -1 -1
I e a e

L, (A
iz "\ xz-1

m+l1

=2Re

———

HELLENIC ARMS CONTROL CENTER PUBLISHING

published on line as an e-book in 2007 71

www.armscontrol.info




PADE-TYPE APPROXIMATION TO FOURIER SERIES N.J.DARAS

Let now

- W(/)(ﬂ.(/)
M /V,;ﬂ)( o)

for any k& < m. From the Proof of (a) in the above Theorem, it follows that the Newton-Cotes

approximate quadrature formula is

I, (anj)(x’z)) ZA(J ’”)(1 ,zm ZA(; m)[1+”<13(2+ (n)zz i ]

that is

T, (Q,(nj)(x,z)) = idﬁj’m)zv with d/"™ = ZA(J m)[ﬂu) T

v=0 k=0
This implies that for any 7 < 1, the Fourier series expansion of the restriction (m/ m+ l)u‘ (t) of

(m/m+1),(z) to the circle of radius r is

(m/m+1), (1)= Z(d“'">+zd<2m)) v ””+i(W)r”e"m

v=0 v=0
= 2Re(2d§1"")rve"”j + iZRe(dez’m)rvemj (—z <t< 7).
v=0 v=0

From the exactitude of the Newton-Cotes quadrature formula for polynomials of degree less than

m , it follows that
dV™ =o' forany v =0,1,2,..,m (j = 1,2).

This property justifies the notation composed Padé-type approximant to u(z) Summarizing, we

have proved the following crucial property for the composed Padé-type approximation:
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Theorem 1.2.5. The Fourier series expansion of the restriction (m/m+1), (t) of
(m/m+1),(z) to any circle of radius r <1 matches the Fourier series expansion of the

restriction u, (t) of u(z) to that circle up to the + m" — order’s Fourier term.

Similarly, we obtain the following more general result:

Theorem 1.2.6. If
‘ﬂfnjl‘ <c forj=12 andany k =0,1,2,....m,

with ¢ > 1, the composed Padé-type approximant

(m/m+1),(z)

to the harmonic complex-valued function u(z) =u, (Z)+ iu, (Z) is a harmonic function in the

open disk D, that is centered at O and has radius % This harmonic function has coordinates

the real parts of two rational functions with denominators V", * (z) and V' *(z)

and whose numerators
Wnil) *(z) and Wf) *(2)

are determined by the condition that the Fourier series expansion of the restriction

(m/m+1), (1) of (m/m+1),(z) to any circle of radius r < % matches the Fourier series

expansion of the restriction u, (t) of u(z) to that circle up to the * m"™ — order’s Fourier term.
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Composed Padé-type approximation is a coordinate procedure. If, instead of a complex-

valued harmonic function u(z), we have to approximate in the Padé-type sense a real-valued

harmonic function h(z) of D, then there is nothing to change. For emphasis and since in such a
case the composed Padé-type approximants are exactly real parts of rational functions of type

(m,m + 1) , We note
Re(m/m+1),(z)

(instead of (m/m+1),(z)), and we say that Re(m/m+1),(z) is a Padé-type approximant to

the real-valued harmonic function h(z) With this notation, we have

(m/m+1),(z) = Re(m/m + l)u1 (z)+iRe(m/m+ l)u2 (z).

Remark 1.2.7. If f = f, +i f, is an analytic function in the disk, with real and imaginary parts
the harmonic real-valued functions f, and f, respectively, then one can show that any Padé-type

approximant to f in the classical sense is a composed Padé-type approximant of the form
Re(m/m + l)f1 (z)+ iRe(m/m + l)f2 (z) .

(For a Proof'see below Theorem 1.2.15.)

Let us now turn to Gaussian methods. It is well known that, in Gaussian approximate
quadrature formulas, the interpolation points are chosen so that the quadrature formula is exact
for polynomials of degree less than 2m + 2. It is also well known that these interpolation points

are the roots of orthogonal polynomials.

Let us consider the family of orthogonal polynomials

(g (x):m=0,12,..}
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with respect to the functional 7, , that is
T, (x'¢,(x))= 0 forany v =012,...m (j =1.2).

The exact degree of each q,(,,j31(x) is m+1. The orthogonality relations are still satisfied if
qfnjzl(x) is multiplied by a constant different from zero. Thus, q,(njzl(x) is defined apart a
multiplying factor. In the sequel, we shall always assume that qr(nle(x) is a monic polynomial. A

necessary and sufficient condition that q,(n’:l(x) exists uniquely is that the Hankel determinant

o oV g gl

) ) ) )

o, o, O3 Oy

(u)) (j))_ ) ) 0 )
H, (0'0 =det| 03’ o o)) - o))
0 () ) )

O-m O-m+1 O-m+2 e O-2m

is different from zero. In what follows, we suppose all these determinants are different from zero,

that is H " )(O'éj )) # 0 for any m # 0. In that case the functional 7, is said to be definite and

m+l

the orthogonal monic polynomials are given by

) ) (@) )
Oy o 0, o Oun
) ) ()] )
0, 0, O3 O
det| : : : :
) ) ) )
O-m O-m+1 O-m+2 e O-2m+1
2 m+1
) _ 1 X X - X _
G (X) = W) 0,1,2,...
m+1 90

Let us choose the infinite triangular interpolation matrix

m,k )mZ0,0SkSm

M = (ﬂu)
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in such a manner that for any m the points 7Z(’_' ()),ﬂ ) ., are the roots of g/) (x). We can

m ma12 Y m.m m+1

of course consider the Padé-type approximation to u, (Z) with generating polynomial

m
ah 0 =TTl=70).
k=0

Setting
)

qr(njgl * ()C) — xm+1qr(nj21 (x—l)’ W,(nj) (Z) = T;j ([qmﬂ (x) - q,(,,121 (Z% . Z]) ,

and
W (2) = "W (z‘ll

we are convinced that the function

2Re(w'(nj) " o (z)) =2ReT, (0(x.2))

is a Pade-type approximant to u; (z) This approximant has the following strong property:

Theorem 1.2.8. Assume that all the roots /) of ¢/ (x) are such that

m,k m+1

‘ﬂfn’f{‘ <c forany k=0,12,....m,

with ¢ > 1. If the Fourier series representation of 2Re(w,(nj ) * (pe'?) / g * (re'p)) is

m+1

2Re(z dv(j’m)rveiv‘gJ (—r<0=<70=<r< l),

v=0 C
then there holds
Usm) _ ()
dv - O-v

forany v =0,12,...2m+1.
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Proof. Let
5 = (w2 ot 22

for any k < m. From the Proof of Theorem 1.2.4.(a), it follows that

7, (00 (x2)= 30"z,
v=0

with
m

4" = 3 B

k=0

This implies that, for any 7 < —, the Fourier series expansion of the restriction
c

Re(m/m+ D(u,)r (®)

of Re(m/m+1),(z) to the circle of radius r is

Re(m/m + D(u,), (t)=2 Re(z dv(j’m)rvemj _

v=0

From the exactitude of the Gauss quadrature formula for polynomials of degree less than or equal

to 2m + 1, it follows that
.m) _ ()
dY m) _ ol

forany v =0,1,2,....2m + 1.
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)

m+l1

Corollary 1.2.9. Assume that, whenever j = 1,2, all the roots ﬂfn’ 36 of q,),(x) are such that
‘ﬂ',(nj;{‘ <c forany k=0,12,..,m
and some constant ¢ 2 1. The Fourier series expansion of the restriction (m/m+1), (t) of
. : 1 : : .
(m/m+1),(z) to any circle of radius r <— matches the Fourier series expansion of the
c

restriction u, (t) of u(z) to that circle up to the * (2m + l)th Fourier term.

Motivated by these exactitude results, we give the second basic Definition of this

Paragraph.

Definition 1.2.10. The function
2Rl * (2)/q4) *(2) = 2ReT, (0 (x,2))
is called a Padé approximant to the harmonic real-valued function u (z) 1t will be denoted by
Re[m/m + l]u/ (2).
The function
Re[m/m+1], (z) +iRe[m/m+1], (2)

is called a composed Padé approximant to the harmonic complex-valued function

u(z) =u, (Z)+ iu, (Z) . It will be denoted by

[m/m+1],(z).
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We have the following result characterizing Padé approximation to harmonic real-valued

functions:

Theorem 1.2.11.([42]) (a). If
Hr(nu+1 ( . )i 0 b

the Padé approximant Re[m/m+1)], (z) to the harmonic real-valued function uj(z) is

uniquely determined, in the sense that there is no other real part of complex rational function

with the property described in Theorem 1.2.8.

(b). If all the roots ./, of g\ (x) are such that

‘ﬂ}%‘ <c forany k <m,

with ¢ 21, then the error of the Padé approximation to u; (|Z| < 1) is given by

Re[m/m+ l]u/ (2)—u,(2)

Cord P ( m“q,;f:l(x)] Cord 2 (e )|
g5 *(2) 0 az-1 (qymj;k(z))2 xz -1

Of course, this Theorem generalizes immediately to the context of composed Padé

approximation.
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Let us finally turn to the construction of Padé or Padé -type approximants to u; (z) as real

parts of rational functions with arbitrary degrees in the numerator and denominator. For any

n>1,u ; (Z) is rewritten as

n-1 n-1 ©
u,(z)= 2Re(z ollz" + z”u;")(z)j = 2Re(z oz + Z”Zoﬂ)‘,z"j .

v=0 v=0 v=0

If QY(x,z) is the interpolation polynomial of (1—xz)"' at the (m+1) zeroes

N ..,x) of the polynomial q,(,',jjl(x) (respectively, of the generating

ma12 9" m.m

ﬂ.(j)

m,0?

polynomial V”(li)l (x)), the function

2Re(nz_l ocz" + z'T ) (Q,(nj)(x, z))j

v=0

is the real part of a rational fraction of type (m +n,m+ 1). If ‘7[”

m’

}{‘Scfor any k < m, with

¢ >1,andif z isreplaced by

then the Fourier series expansion of this function, with respect to the variable 8 €[-7,7],

matches the Fourier representation of u j(re“g)up to the i‘(2m+n+1)th Fourier term

(respectively, up to the * (m + n)th Fourier term). This function is said to be a Padé approximant

to u(z) of higher order and it is denoted by

Re[m+n/m+ l]u/ (2).
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(Respectively, this function is said to be a Padé-type approximant to u(z) of higher order and it

is denoted by

Re(m+n/m+ l)uj (2)).

The function

Re[m+n/m+1], (z)+iRe[m+n/m+1], (z)
is called a composed Padé approximant to u(z) =u, (z)+ iu, (Z) of higher order and is denoted
by

[m+n/m+1],(z).

Similarly, the function

Re(m+n/m+1), (z)+iRe(m+n/m+1), (2),
is a composed Padé -type approximant to u(z)=u,(z)+iu,(z) of higher order and is simply
denoted by

(m+n/m+1),(z).

1.2.2 Convergence Results

In studying Padé-type approximation to analytic functions in the disk, one problem of
considerable interest were that of describing the suitable choice of the generating polynomials in
order to establish the convergence of the corresponding sequence of Padé-type approximants. The
purpose of this Paragraph is to study the same question about Padé-type approximants to

harmonic functions. The techniques used are similar to those proposed by Eiermann in [55].
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First, suppose u is a harmonic real-valued function in the open unit disk with u(O) =0.

(Otherwise, we consider the difference U = u — u(O).) Then u(z) can be written as

u(z) = 2Re[iaszj (< D).

As we have seen, if 7, : P(C)—C is the linear functional defined by T, (x") =0c" (v=0,1,2,...)

then the function u(z) can be rewritten in the form
-1
u(z) = 2ReT,(1-x2)") (2 <1).
Given now an infinite triangular interpolation matrix
M = (ﬂ-m,k )mZ0,0SkSm
with complex entries ‘ﬂ'm’k‘ <1, for any zeC— {71',2,( ck=0,1,..,m} let Qm(x,z) denotes the

unique polynomial of degree at most m which interpolates (1 —xz)™" in the (m + 1) nodes of the
m" row of M . If some of the nodes 7, coincide, the interpolation has to be understood in the

Hermite sense. It is obvious that each polynomial O, (x, Z) can be expressed in the form

m k
0,(x.2) =2 S ()2 x"2",
k=0 v=0
where 3, ,(z) are complex-valued functions in z € C— {71',2,‘T 1k =0,,...,m}. Thus, if

N(Z) = (ﬂm,k (Z))mzo,ongm

then the summability method to the function

u(z) = 2Re(i O'Vzvj

v=0
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induced by N (z) is a sequence of Padé-type approximants to u(z):
m k
{Re(m/m+1),(z) = 2ReT, (0, (x,2)) = 2Re(z B2 aszj :
k=0 v=0

z EC—{ﬂ';ik ck <m},m=0,12,.}.

With this notation, the convergence behaviour of the sequence
{u(z)-Re(m/m+1),(z):m=012,..}

depends on the convergence of the sequence
m k
{(A=x2)" =D B, (DD X2 im=012,.}:
k=0 v=0

the generalized version of Okada’s Theorem as given by Eiermann in [55] implies that if Cx {0}

is contained into an open set @(N) C C into which the sequence
m k
D B (2D %2  m=01.2,.}
k=0 v=0
converges compactly to (1—xz)™", then
lim, , Re(m/m+1),(z) =u(z)

compactly on

glo(N))={zeD:({,2) € o(N),

¢l<1.

Since
(1-xz)" - f B2 X'z =(1-xz2)" -0, (x,2),

and since the interpolation polynomial of (1 —xz)™' satisfies

1_ Vm+1 (X)

0,(x,2)=( —xZ)_l( Vo

J (23],

we have proved the
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Theorem 1.2.12. If the generating polynomials
Vm+1(x) = 7H('x - ”m,k)
k=0

satisfy
s Vm+1('x? :0
Vin(z7)

compactly in an open set @ < C* containing Cx {0}, then there holds

lim

lim, , Re(m/m+1),(z) =u(z)

compactly in {ze€ D:({,z) € o,/ | <1}, for any u(z) harmonic real-valued function in the

disk.

Just as we did for the Proof of Theorem 1.2.12, we can verify the following convergence

result for a sequence of composed Padé-type approximants.

Theorem 1.2.13. Let u(z) be a harmonic complex-valued function in the open unit disk D . If the

generating polynomials
) = n T2 ) and 1200 = ] Tlo22)
k=0 k=0

satisfy
V() V() _

m+l1

limm%oo 0 s -1~ hmmﬁoo T, 1~ 0
Vah(zh Vaaz™h

compactly into an open subset @ of C* containing Cx {0}, then

lim, , Re(m/m+1),(z)=u(z)

4ESiS

compactly in {ze€ D :({,z) € o,
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Let us mention three direct and interesting applications of Theorem 1.2.13.
Corollary 1.2.14. Let u(z) be a harmonic complex-valued function of D .
(a). If the generating polynomials are

4%,

m+1

x)=(x-a)"" and VP (x)=(x-B)"" (a,feC, m=012,.),

m+1

then the corresponding sequence {(m/ m+1)u(z):m=0,l,2,...} of composed Padé-type

approximants to U converges to u(z) compactly in the open set

Q={zeD: ‘z’l —a‘ > sup‘§‘<l|§—a| and ‘z’l —ﬂ‘ > sup - B}

(b). If the generating polynomials are
VO = [Tl-0) and v, = [T~
k=0 k=0

(m=0,12,.), where each sequence {71’,&”:k=0,l,2,...} has  NY)  limit points

LY, LY,..., (1\{2,)_1 approached cyclically (i.e.lim, , ”i,jzznk = 1\)), then the corresponding

sequence {(m/ m+ l)u (Z): m= 0,1,2,...} of composed Padé-type approximants to u converges

to u(z) compactly on
A:{zeD:z'1 @E(@_S,))U (6_(1922))}’

where @;j? is the lemniscate with focci L(Oj ),Lﬁj ). LY and radius
J

N 1
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NG _

l(é—ﬂ-

k=0

(¢). If the generating polynomials y (x) are the Tchebycheff polynomials

m+1

Vi (x) =V (x) = H(x - cos{ 22k *1 ﬂ:D (m=012,.),

i m+1

then the corresponding sequence {(m/ m+l)u(z):m 20,1,2,...} of composed Padé-type

approximants to u converges to u(z) compactly into the open set

A={zeD:|z"+1+[z" =1 >sup,_ (e +1+[g - 1)

1.2.3. Connection with the Classical Theory

To confirm the coherence of our theory on Padé-type approximation to Fourier series, we
are indented to explain its consistency with the classical one about Padé-type approximation to
analytic functions. The aim of this Paragraph is to certify this coherence, by showing that

classical Padé-type approximants are a special case of composed Padeé-type approximants: if

f = f,+if, is any analytic function in the disk, with respective real and imaginary parts the
harmonic real-valued functions f, and f,, then every Padé-type approximant (m/ m+ l)f to

f is a composed Padé-type approximant to f of the form

Re(m/erl)f1 +iRe(m/m+1)f2.
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Suppose f = f, +i f, is analytic in the open disk:
f(2)= Za<f> Y (<.

Assume that f(0) = ai’ = 0. Otherwise, we may consider the difference f — f (O) If we

restrict f* to any circle of fixed radius » <1, we obtain a continuous function on that circle

which can also be interpreted as a function on the unit circle:
£0)=1lre").
Now, observe that
L= alre"
v=0

(f)r for v 20, and is zero

This in particular means that the v Fourier coefficient of [ isa
for v < 0.
On the other hand, the function f being harmonic, the restriction of each part fj to the

circle of radius 7 has a Fourier representation:

110 = £, (e )= 2Re(z (" ej (j=12).

Hence

za(f) v _ivt ZRC(ZC(J’I) v zvtj lzRe(zc(fz) v zvt]
:Z(Cl(/ﬁ)+ic‘(/fz)) v m+z( () el )rve—m’

v=0

or, after a change of variables,

o0

S a2 =Y vict) 2+ S e |7 (zeD)

v= v= v=0
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From the analyticity of f, we get
a‘ff) — cl(/fl) +iCl(,f2) and c‘(/fl) — iCl(,fZ)

for any v > 0. (Or, if one wishes, one may deduce these equations directly from Cauchy’s

Integral Formula

asf)zi J‘ f(é/)a’é’:Ll jffr(t) It

. v+l v ivt
2721m=r4' 2rr’ < e

and, from the fact that

o) :LL]’-lf;J(f) ”
Y 2rr” e

Indeed, it is immediately seen that

2727,v ivt ivt

1 Ff(t 1 G t 1 t . :
a =L [ L0, 1L flAkO, L EALO, e
Je 2m" C e 2m” Y e
and consequently,
e —ict? =0 forany v > 0.)
Define now the linear functionals

T, :P(C)>C:x" > T, (x") =al’”,

T, PC)>Cx" > T, (x")= e,
and

sz ’P(G)—)va [N sz (xl/) = C‘(,fZ).
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It is well known that these functionals extend continuously and linearly to the common larger
vector space ) 5) (see Lemma 1.2.1). Further, since
at = P 4ic and ) = e

for any v >0, we also have

asf) = (cifl) + icﬁf”)+ (W): 2Rec£f‘) + i2Rec§f”
and therefore

T,(x")=2ReT, (x")+i2ReT, () forall v >0.
By linearity and density, we obtain

Tf(g):2ReTfl(g)+i2ReTf2(g) for any ge@(B).

In particular, for any fixed z € D, it holds

1 1 1
T =2ReT +i2ReT,
f(l—xz} f‘(l—xz] fz(l—xzj

(where T, T, ,T, acton the variable x , while z is regarded as a parameter).

Choosing
M =M =M (e, )

m>0,0<k<m’

with 7, , €C, and letting, for any m >0 and z€ D—{x,’, :k <m}, O, (x,z) be the unique

7T it is clear that

m,12°**2 " m,m

T,(0,(x,2))=2ReT, (0, (x,2))+i2ReT, (0, (x,2))

and hence we have proved the

polynomial which interpolates (1 - xz)_1 at X =7, 0,7

Theorem 1.2.15. ([44]) Every Padé-type approximant to a function analytic in the unit disk is a

composed Padé-type approximant to this function.
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1.2.4. Numerical Examples

Example 1.2.16. Let D be the open unit disk of C and let f : D — R be the harmonic function
f(z)=Rez.
We will consider several different cases:

(a). Choose m =3 and 7, = 7;, = 713, = 7,; = 0. Then

1
Re(3/4),(z) = 2Re % =Rez = f(2).

1
(b). Choose m=3 and 7, , =7y, = ;) =73, = 1 Then

162° —128z° +128z

Re(3/4),(z) = 2R '
e( )f(z) eZ4_16Z3+3222—256z+256

Thus,
1 1 1
(¢). Choose m =3 and 7, , =Lz, = —5,773’2 = —5,773’3 =4 Then,
24 50 , 35 ;
—z+——z +——z
Re(3/4),(z)=2-Re 48 48 48
50 35, 10 5 1 ,
l+—z+—z'+—z +—z
24 24 24 24
Thus,
z Re(3/4),(2) f(z)=Rez
(d). Choose m =3 0 0.0000000 0 and
1 0.4888747 0.5
2
) 0.5463334 0.5
— 47—
2 2
_; 3 0.0132866 0

HELLENIC ARMS CONTROL CENTER PUBLISHING
published on line as an e-book in 2007
www.armscontrol.info




N.J.DARAS PADE-TYPE APPROXIMATION TO FOURIER SERIES

2k + V4 o
7Ty, = COS - T\ Ty = cos7 = €0s(25.714285")=0.9009688,
3z o
7Ty, = COS El = €0s (77.142857°)=0.22252009,
Sx o
7Ty, = COS 3 =C0s(128.57142°)= —0.6234898,

T o
Tt33 = COS = = c0s(180°%) = —1.
Then,

47 +2z* —47°
Rel3/4 =2R .
e( )f(z) e[8+4Z—822 -3z + 24}

Thus,

z Re(3/4) f(z) f(z)=Rez
0 0.0000000 0
1 0.4888888 0.5
2
1 1 0.5305536 0.5
_+l Pp—
2 2
03 -0.0094428 0
_l Pyp—
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Example 1.2.17. Let D be the open unit planar disk and let f:D —>R be the harmonic
function
f(z)=Imz.
As in the Example 1.2.16, we will consider several and different cases:

(a). Choosing m =3 and 7;, =7, = 7;, = 713, =0, we have

-1

Re(3/4),(z) = 2-Re| 22 | = Re(-iz)=Imz = /() .

4
z

1
(b). If we choose m =3 and 7,y =7, = 713, = 735 = r then

—i162° +i128 22 —i 128 z
Re(3/4).(z)=2-Re
(3/ )f() {24—1623+3222—256z+256}

and
z Re(3/4)f (z) f(z): Rez
0 0.000 0.0
1 0.520 0.5
2
1 .1 0.406 0.5
_+l N
2 2
3 0.150 0.0
_l p—
4 1 0.280 0.8
__l —
5
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—i162° +i128 2 —i 128 z
Re(3/4),(z)=2-Re
(/ )f() L“—l6z3+3222—256z+256}

and

z Re(3/4),(2) f(z)=Rez
0 0.000000 0.00
1 0.0000000 0.00
2
1 .1 0.4859469 0.50
_+l J—
2 2
.3 -0.7596724 -0.75
_l —_—
1 1 1
(). If m=3 and 7y, =-1,7;, = —5,72'3’2 = —g,ﬂw =7 then
.24 .50 , .35
—1 ISZ_ZISZ _ZISZ
Re(3/4 =2-R
e(3/4),(2) 750 35, 10, 1,
I+ —z4+—z +—2z + z
24 24 24 24
and
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z Re(3/4),(z) /(2)
0 0.000000 0.00
1
E 0.0000000 0.00
l +l' l
> > 0.5432119 0.50
.3
_ZZ -0.7112400 -0.75
(d). If m =3 and
2k +1 T
7T, = COS |7 = cos;=0.9009688,
3z
T3y = 0057 =0.2225209,
57
Ty, = COST = —0.6234898,
735 =cosm =1,
then
4z +2z° —47°
Rel3/4).(z)=2Re
( )f( ) [8+4z—822—3z3+z4}
and
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z Re(3/4),(z) /(z)
0 0.0000000 0.00
1
E 0.0000000 0.00

l_,.ll

5 > 0.4965407 0.50
.3

_ZZ -0.7111234 0.75

Example 1.2.18. Let f and g be the two real-valued harmonic functions

and g:D—)R;zl—)g(z):Im !

1-z 1-z

f:D—>R;z f(x)=Re
(D={zec:|4<1}).
(a). For m=5 and 71,y = 7T, = s, = 7Ty, = 7is, = 755 = 0, we have
Re(5/6),(z) =2 Re% Qtz+242 42" +25)-1=Re(l+ 22+ 22 + 24+ 2)
and
Re(5/6),(z) =2 Re[% (z+22+2 +2* +25)} “Re|(-i)(z+ 27+ +2* +zs)]

Indicatively, we can state the following numerical results:
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z /() Re(5/6),(2) g() Re(5/6), (2)
0 1.0000000 1.0000000 0.0000000 0.0000000
i 0.9615384 0.9573333 0.1923076 0.1872000
5

i .3 0.8287292 0.750209 -0.7458563 -0.6596859

375
1 1.1428571 1.1440298 0.0000000 0.0000000
8

(b). For m=4 and 7, , =-1,7,, = —l,ﬂ“ = —1,7[43 = —i,ﬁ44 = —i,we have
' ’ 3 9 - 27 1

183798 z* +187188 z° + 212598 z* + 235467 z +118098 4
59049 + 88209 z+32670 z* +3630 z° +120 z* + 2°

Re(4/5),(z) = Re

b

183798 z* +179928 z* +147258 z> + 59049 z

Re(4/5),(z) = Re

i (59049 + 88209 z +32670 2> +3630 2° +120 z* + 2°)

and
z f(z) Re(4/5),(2) g(z) Re(4/5),(2)
0 1.0000000 1.0000000 0.0000000 0.0000000
i 3 0.8287292 0.6467485 -0.7458563 -0.9878018
—_—— l_
3 5
i 0.8000000 0.7814009 -0.4000000 0.3255728
2
1 1.2000000 1.1996231 0.0000000 0.0000000
6
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(¢).If m=3 and n,, =7, =7,, =0,7,; =1, then

2—z

Re(3/4)f (z)=Re |

—Zz

-1 and Re(3/4),(z)=Re

1—iz

The efficacy of these approximations becomes apparent in the next table:

z /() Re(3/4),(2) glz) Re(3/4),(2)

0 1.0000000 1.0000000 0.0000000 0.0000000
i—ié 0.8287292 0.8287292 -0.7458563 -0.5469613
3 5

ii 0.6097560 0.6097560 0.4878048 0.4878048

5

1 1.1666666 1.1666666 0.0000000 0.0000000

7

Example 1.2.19. We will now approximate in the Padé-type sense the real-valued function

f(Z)=10g|1—z| (zeD).

(@).If m=5and 7y, =75, =75, =753 =75, = T55 =0, then

2 3 4 5
Re<s/6)f<z)=—Re[z%%%@

and
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z f(Z) - 10g|1 — z| Re(5/6)f (z)
0 0.0000000 0.0000000
i -0.6931471 -0.6272916
2
5 0.6061358 0.5777392
6
_;3 0.2231435 0.2021484
4
41 -0.6189371 -0.7032277
5 2

Indicatively, one has

(b). For m=3 and 7, = 7y, =7m,, =0,7,; =1, we have

3 2
Re(3/4),(z) = é ReZ 132702

1-z
z f(z) Re(4/5)/(z)
0 0.0000000 0.0000000
1 -0.287682 -0.2881944
4
5 0.6061358 0.6123737
6
;2 0.0784716 0.0387626
7
L -0.3465735 -0.3333333
2 2
4_1 -0.6189371 -0.494885
5 2

N.J.DARAS
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Example 1.2.20. Let f be the real-valued harmonic function

fD>R;z f(z)=log

D is always the open unit planar disk.

(a). For m=6 and 7, , =7, = o, = M3 = gy = g5 = Ts =0, it holds

Thus

Re(6/7),(z) =2 Re i (

-1 -3
z z

5 3

T

=7
z

1+z

1-z

J =£ Re:(fiz5 +52°+15 z) .
15

z 7(z)= 10g‘1 +z Z‘ Re(6/7),(z)
0 0.0000000 0.000000
1 0.2876820 0.2876816
7
3 0.0000000 0.0000000
2
R 0.0000000 0.0000000
2
6 2.5649494 2.1076896
7
_6 -2.5649494 -2.1076896
7
1.3 0.4886851 0.4860707
3 5
4.1 1.243888 1.2604053
5 2
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2k +1

(b). For m=3 and 7, = cos( ﬁj (k = 0,1,2,3), we have

z+0.5 ZZ—%ZS
3

Re(3/4) (z)=2 R
e(/ )f(z) © 1+05z-2z°-03752°+0.125 *

In the following table, we have collected some trivial cases:

| f()= log‘l +z Z‘ Re(3/4);(2)
0 0.0000000 0.0000000
1 1.0986123 1.1273712
2
i 0.0000000 -0.0371954
5
1.1 0.8047189 0.7328022
2
1.4 0.2090678 0.2146718
8 9

1.3. Padé and Padé-Type Approximation to L’-

Functions
1.3.1. Preliminaries

In this Paragraph, we put the preparatory material which we shall need in the sequel.

Since the text is expository the proofs will be omitted; they can be found in the literature.
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The original Dirichlet Problem was the following one: given a real-valued continuous

function f on the unit circle C, find a continuous function on the closed disk D which agrees
with f on the circle and which is harmonic in the open disk D. This Problem is completely
solved by the Poisson Integral Formula: if P. is the real-valued function whose Fourier

v

coefficients are 7', i.e.

= , 1+ re” 1-72
P@) =Y r"e" =Re | =
/() _Zw: 1—re" 1-2rcosf +r*

(0 <r<1,—7 <0 < ), then the family

(P:O0<r<l}

is called the Poisson kernel of the unit disk and any harmonic function u in the open disk has the

following integral representation

ulre)=u, () = 2L jfu(t)P,(H—t)dt 0<r<l-z<0<n).
72.—7[

Theorem 1.3.1. Let u be a complex-valued function in L of the unit circle, where 1 < p < 0.

Define u in the unit disk by

ulre” )= iiu(t)]{(@ “1)dt .

Then the extended function u is harmonic in the open unit disk, and, as v — 1, the functions
u,(0) = u(reig) converge to u in the L' —norm. If u is continuous on the unit circle, the u,

converge uniformly to u ; thus, the extended u is continuous on the closed disk, harmonic in the

interior.

HELLENIC ARMS CONTROL CENTER PUBLISHING
published on line as an e-book in 2007 101
www.armscontrol.info




PADE-TYPE APPROXIMATION TO FOURIER SERIES N.J.DARAS

Theorem 1.3.2. Let 1 be a finite complex Baire measure on the unit circle and let

ulre)= Tp,(e ~du(?).

Then u is harmonic in the open disk and the measures

du = Lu,(t9)d€
2

converge to I in the weak-star topology on measures.

In all the above cases, it would seem convenient to say that the harmonic function
u(reig )is the Poisson integral of the corresponding function or measure on the unit circle. This

will save us some words as we proceed to reverse the process. We will now ask: given a harmonic
function in the disk, how do we ascertain if it is the Poisson integral of some type of function or

measure on the unit circle? If u is harmonic, then
. 0 .
u(re"’) = chr‘v‘e’v‘g
—00

so the question is actually: when is {c, : v = 0,£1,%2,...} the sequence of Fourier coefficients of

some type of function or measure? We have the following

Theorem 1.3.3. Let u be a complex-valued harmonic function in the open unit disk. Write
u,(0) = u(reig).

(a). u is the Poisson integral of an L' — function on the unit circle if and only if the u, converge

in the L'-norm.

(b). If 1 < p <00, then u is the Poisson integral of an L’ — function on the unit circle if and

only if the functions u, are bounded in L' — norm.
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(¢). u is the Poisson integral of a continuous function on the unit circle if and only if the u,

converge uniformly.

(d). u is the Poisson integral of a finite complex Baire measure on the unit circle if and only if

the u, are bounded in L' — norm.

(e). u is the Poisson integral of a finite positive Baire measure on the unit circle if and only if u

is non-negative.

The L* —part of (b) is Fatou’s Theorem. The interesting part of it is the fact that any
bounded harmonic function in the disk is the Poisson integral of a bounded Baire function on the
unit circle. Part (e) is Herglotz’s Theorem: every non-negative harmonic function is the Poisson

integral of a positive measure. One should note that in any of the cases above the harmonic

function u is real-valued if and only if the corresponding L” — function or measure is real. For

more information, we wish to note that the Poisson integral of a Lebesgue-integrable function u
in the unit circle has a radial limit lim_ u (rem) at almost every point of the circle, and this limit

is almost everywhere equal to u . More generally, we might state the following:

Theorem 1.3.4. Let u be a complex-valued harmonic function in the open unit disk. Suppose that

the integrals
x p
I ‘u(re’?} do
are bounded as v — 1 for some p,1 < p < oo. Then for almost every @ the radial limits
a=lim, u(re’p )

exist and define a function it in L’ of the circle. Moreover,

(a). if p>1, then u is the Poisson integral of it ;
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(). if p=1, then u is the Poisson integral of a unique finite measure whose absolutely

continuous part is

Lﬁ”d@.

2r
If u is a bounded harmonic function, the boundary values exist almost everywhere and define a

bounded measurable function Bl whose Poisson integral is u .

For more about the Dirichlet Problem and the various boundary value results see

Bieberbach [11], Courant [36], Evans [57], Hoffman [81], Lasser [91] and Zygmund [150].

1.3.2. Composed Padé-Type Approximation to L’- Functions

A large number of the harmonic case properties still hold for other classes of functions

and measures. Among others, we will first discuss the case of real-valued L” — functions in the

unit circle C.

Let again

M = (ﬂmak )mZ0,0SkSm

be an infinite triangular interpolation matrix with complex entries
i €D.
For any fixed z eC— {ﬂ,;fk tk=0,1,..,m}, let O, (x,z) denote the unique polynomial of degree

at most m , which interpolates (l - xz)_1 in the (m + 1) nodes of the m™ row of M , i.e.
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Qm (”m,k’z) = (l - 7z-m,kz)71
forany k <m.

Let also u( ) be a real-valued function in L” (C ), I1<p<owo (-7 <t< ), with

sequence of Fourier coefficients {o, : v = 0,£1,12,...} . Define the Poisson integral of u(e”) by

u (t)—u re' =$Tu p (t—0)dO = Z[ ]iu( i0 )e—zvede}v ive
= Zo-vr\v\eivt

(0<r<1 and {P ()} is the Poisson kernel of D). From the solution of Dirichlet’s Problem in

D, it follows that the extended function u(r e”) = u(z) is harmonic in the open unit disk and

satisfies

=0.

u, (t)— u(e”l ,

lim

r—l
For any m > 0, we can therefore consider the Padé-type approximant
Re(m/m+1),(z)=2ReT, (0, (x,2)- o,
to u(z), where T is the linear functional on the space of complex polynomials defined by
T(x")=0, (v=0,12,..).

As it is pointed out in Theorem 1.2.6, this approximant is a harmonic real-valued function in D,

with Fourier series expansion

Re(m/m+1), (re”) = idﬁ"’)r"ei"' + idv(m)rve_in
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(0<r<1,—7 <t <), such that

v 7 v 7

d‘f'”) = ;— Iu(rei’)?_iv'gdé’ =0, and F = ;— J‘u(reig)?wdﬁ =0, (0<v<m). Since it
V4 V4

—r -
is assumed that ‘ﬂ'm,k‘ <1 for any k<m, it is easily verified that the approximant

Re(m/ m+ l)u (z) can be extended continuously on the closed unit disk. In fact, according to
Theorem 1.2.4.(a), we have

Re(m/m+1), (re” ) = 2Re(Wm i (reit )V K (re” )j -0,

m

and it suffices to consider the radial limits
. % it
Re(m/m+1),(¢") = 2Re T, (0, (x.2))- &, = 2Re(W’" ( )V (e )j -0,
m+l1

-w<t<r.
We are now in position to give the definition of Padé-type approximants to

L? — functions.

Definition 1.3.5. Let
V) = 7] [l -7,.,)
k=0
be a generating polynomial, with y € C— {0} and ‘ﬂm,k‘ <1 for any k<m.

Let u be a real-valued function in L” (C ), 1< p L. Suppose

0
ivt
3o

V=—00

is the Fourier series expansion of u(e”). (Notice that, in general,
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Consider the linear functional
T,PC)>CT,(x)=0

and define

Vo, *(x)=x"", (X’ll w,(z)=T, ([V’”“ @~V (x% _ x])
W, *(z)=z"W, (z_1 ) .

The function
Re(m/m+1),(z) = 2Re(W’" i (% x (z)j —0,=2ReT,(0,(x,2))-0,.

(|Z| < 1) is continuous everywhere on C , and is said to be a Padé-type approximant to u(z)

Mention that each u(z) el’ (C ) can also be viewed as a function (7)€ L’ [-7x, 7], with
a(t)=ule") and  a(—7)=i(7)
and with the same sequence of Fourier coefficients
{o,:v=0,£1,£2,...}.
Conversely, any function f in L” [— 72',7r], which is 27 — periodic (i.e. f (— 7r) =f (72')) is
identified with a function f (e”)= f(z)e I7(C). Hence, via the identification L (C)
={f € I’[-n,x]: fis a 2n-periodic}, we can introduce Padé-type approximation to every real-

valued function f e L [— T, 7r] such that f (— 7r) =f (72')
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Definition 1.3.6. Let
Vm+1(x) = ]/H(x - ﬂ-m,k)
k=0

be a generating polynomial, with y € C— {O} and such that ‘ﬂ-m,k‘ <1 for k=0,1,2,...,m.

Let f be areal-valued 27 — periodic function in L [— 7Z',7Z'], 1< p <oo. Suppose ZCvem

is the Fourier series representation of f (t) (Of course, in general
f)% Y
Consider the linear functional
T, :P(C)—>C:T,(x")=c,
associated with f, and define
V. *x)=x""v (x’ll /6 (z) =T, ([V'"“ @)=V (x% _ x])’ The

W, *(z)=z"W, (Z_l ) .

function

Re(m/m+1),(t) = 2Re(Wm * (e”)V o )j —c, = 2ReT, (0, (x,¢" )~ ¢,

m+1

(—m £t £ 1) is continuous everywhere on [— 72',72'], and is called a Padé-type approximant to

1),
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Thus, if o,=0,then a Padé-type approximant to u(z) (|Z| =1) is the real-part of a
rational fraction of type (m,m + 1) , with respect to the variable z . A Padé-type approximant to
f (t) (= m £t < ) is the real part of a rational function of type (m,m + 1) , with respect to the
dependent variable s = S(t) =¢'', only if ¢, = 0.

Furthermore, the above two definitions mean that if only a few Fourier coefficients

o, (respectively, ¢, ) of the real-valued functions u(z) el’ (C ) (respectively, of the real-valued

27 — periodic function f (t)eLp [— 7[,72']) are known, then ome can approximate u(z)

(respectively, f (t)) by an approximant in the Padé-type sense. The crucial property, which

justifies the notation Padé-type approximant is described in the following:

Theorem 1.3.7. (a). If ‘ﬂm,k‘ <1 for any k<m and if the Fourier series expansion of

Re(m/m+1),(e") is

id(m)eivt
then
d" =o
forevery v =0,21,12,....
b). If ‘ﬂmk‘ <1 for any k < m and if the Fourier series expansion of Re(m/m + l)f (t) is

Zﬂ‘fm)eivt,

V=—0

then
(m) _
IBV - cv

whenever v = 0,£1,....xm .
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Proof- (a). Since every harmonic real-valued function in the unit disk, with continuous boundary

values, is the Poisson integral of its continuous restriction to the unit circle, we have

. 1 % )
Re(m/m+1), (re”) = .[Re(m/m +1), (e“g)l-';(t -6)do
ﬂ-—ﬂ
and henceforth the Fourier series expansion of Re(m/m +1), (re”) is given by

Re(m/m + l)u(re”)z Zdi’”)r‘v‘em (0<r<l-z<t<rm).

y=—00

From Theorem 1.2.5, it follows that
d" =co
forany v =0,£1,£2,....2m.

(b). As it is mentioned above, if f (t) el’ [— 7[,72'] is a 27 — periodic real-valued function, there
is a function u(z) el’ (C ) having the same Fourier coefficients with f, and such that
u(e”): f (t) for all ¢ e [— 7z,7r]. Repetition of the same argument as in (@) shows that the
Fourier coefficients of Re(m/m+1), (e”) coincide with the Fourier coefficients of u(e”) up to

the + m™ order term. We thus conclude that also the Fourier coefficients of Re(m/ m —l—l)f (t)

coincide with the Fourier coefficients of f (t) up to the + m" order term.

The errors of these approximations are given by the following theoretical formulas:
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Theorem 1.3.8.(a).

S R e )

m+1

in the I? — norm.

(b).

xre" —1

3 . 1 V. ..(x)
Re(m/m+1) (1) - f(t) =lim,_, 2Re[ Vmﬂ(r’le”" )Tf( H ,

in the [P — norm.

Proof. Let {O <r,<l:n= 0,1,2,...} be any sequence satisfying lim,_ 7 =1. It is well known

n—>0 "n

that

=0.

P

: it it
lim, H u(rne )— u(e l

By the uniform convergence of the sequence {Re(m/ m+ l)u (rn e”): n= 0,1,2,...} to the radial

limit Re(m/m+1), (e”), we also get

lim, . [Re(m/m+1), (")~ Re(m/m+1),(e") )

Il
<

Letting & > 0, it is clear that there existsa N = N (8) with

Hu(rne” )— u(e” l
for any n = N. It follows that

Hu(rne” )— u(e”]

for n > N , and therefore

b

, < % and HRe(m/m +1), (rne”)— Re(m/m+1), (e”} ,

&
< =
2

ot HRe(m/m +1), (rne”)— Re(m/m+1), (eit] , <&
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)~ Retmm 0, (" -l )~ Rem im0, ] <2

for n > N, or, by Theorem 1.2.4.(b),
retmim o, 6k} 25 )|

for any n > N . This proves the first assertion of the Theorem. To prove the second assertion, it

suffices to use the standard identification of {f e ’[-zx): fis 27 - periodic} with 17(C)

and repeat the same argument.

One should contrast this result with the situation for analytic functions.

The continuous case is much more precise.

Theorem 1.3.8. (a). If u is a real-valued continuous function on C , then

Rt 1,6, 2w b Bt
e

Vo (r xre —1

uniformly on [— 7[,7[].

(b). If [ is a real-valued 27 — periodic continuous function on [— 7[,7[], then

xre" —1

1 1 v, +1

uniformly on [— 72',72'].

The Proof of Theorem 1.3.8 is similar to that of Theorem 1.3.7.
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We can also give a more concrete description for the theoretical expressions stealing in

the error formulas of Theorems 1.3.8 and 1.3.9.

Proposition 1.3.10. (a). If u € L (C ) is real-valued (1 < p < ), then there holds

TM(VM(X)j:L ”MV (e*)ds (0<r<l-z<t<m).

i(t— 1
xre" =1) 27 re 1"

m).If fel’ [— 7[,7[] is 27 — periodic and real-valued (1 < p < o), then there holds

X N —is
Tf(x””(—)j J.re'j;(s)) m+l<e )ds (0<r<l and -7 <t<r).

Proof Let 0<r<1,—m <t <rm.Set

V() = 2 5x"
k=0

Application of the continuity property for the linear functionals 7, and 7', shows that

Vm+1(x) _ S v _ivt . blgm) T is | —i(v+k)s
z’(xrei’—lJ_ ; ¢ ; 2z _J;u( )? @

and

m)ﬂ

f(xmu(x)j irvelvti J'f( )e—z(v+k)sds

v=0 k=0 —r
Computing, we obtain

Vm+1(x) _ l m) —iks v _i(t—=s)v
) s e B e e
1 4 B Vm+1 —is
:Ej‘u(e >{rei(t—(se)_2}ds'
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Similarly, one shows that

.{x;";,‘,(x)] j S (s ){ ":;;(j 2}ds,

and the Proposition follows.

Next, we shall see how to construct Padé-type approximants to continuous functions as

real parts of rational functions with arbitrary degrees in the numerator and the denominator.

Let again u(Z) = u(e”) be a real-valued continuous function on the unit circle C, with
Fourier series expansion

0
zo_veivt

y=—00

The Poisson integral of u is then a harmonic real-valued function in the unit disk D, defined by

u. (r) = u(re”)= io;r‘v‘ei” (0<r<1).

V=—0

Forany n >0, u(r e”) can also be written in the form

u(reit)=2R67;((l—xreit) ) 2RC(ZG el L ey (re”)}
n—1

=2Re(20 rie +r"e"'T, [(l—xre”)_lD ,
v=0

where we have used the notation u, (r e t) for the series

and where we have considered the linear functional

T, RO—>Cx 5T, ()=0

n+v*
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It is now clear that the Padé-type approximant to u (r e t)

2Re(m+n/m+1), (re”) = 2Re[§ or'e +re"'T, (Qm (x, re' ))j ~ %

v=0

(0 L7 <1,—7 <t < x) has the following uniform radial limitas » — 1:

n—1
2Re(z o’ +e"T, (Qm (x, e’ ))] -0,
v=0
n_l . . .
=lim, ,, 2Re| Y o,r"e" +r"¢"'T, (Qm (x, re" )) -0, (—x<t<n).
v=0
If we set z = €'’, this limit can also be written as
n—1
2Re| o,z +2'T, (0,(x.z)|-0, (|7=D.
v=0
This is the real part of a rational function of type (m +n,m+ l) inz. If
‘ﬂ'm’k‘ <1,
then the Fourier series expansion of the above limit matches the Fourier series expansion of

u(re”) up to the terms of * (m + n)’h order. Motivated by this property, we shall say that this

limit is again a Padé-type approximant to u(z) (|z| =1). So, we can write

Re(m+n/m+1),(z) = 2Re(nZ_EO'VZV +2'T, (Qm(xaz))j_o'o (|Z| =D.

v=0
Similarly, given a continuous 27 — periodic function
fil-nm,x]>R:it> f(2)

with Fourier series representation

o0
ivt
>,
v=—0

the function
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v=0

n—1
Re(m+n/m+1)(t) = ZRG(Z ce' +e"'T, (Qm (x, e" ))j -¢,
(t €[-m,m]) is the real part of a rational function of type (m +n,m+ 1) with respect to the

dependent variable s = s5(t) = " and is called a Padé-type approximant to f (t) The functional

T 7+ ‘P(C)—> C is now defined by

Tf,, (xv) =Cv
The fundamental property of such an approximant is the coincidence of its Fourier representation
with that of f up to the (i m+ n)th Fourier term.

If instead of a harmonic complex-valued function we have to approximate

a complex-valued function which is in ” (C ) (1L p<Lo),

either

a complex-valued 27 — periodic function in L [— 72',72'] (1< p<Lw),

then composed Padé-type approximation can be defined analogously.

Indeed, as before, let us consider two infinite triangular interpolation matrices

MO = (,[(n

m.k )mZ0,0SkSm

and M = (ﬂ(z)

m,k )mZ0,0SkSm )
In contrast to the harmonic complex case, where we have supposed ‘ﬂ',(nj 3(‘ <c (|c| >1), we will

now assume that

7/} €C forany m,k andany j=12.

Let again Q,(nj)(x,z) be the unique polynomial of degree at most m which interpolates
(l—xz)f1 in the (m +1) nodes of the m" row of MY ie.

O (atl2) = =atlz) o k= 01.2,.m (j=12)

If u=u +iu, is any complex-valued function in L” (C ), 1< p <00, we define the Poisson

integral of u(z) by setting
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uj(reig)z 2Re(20§j)rvemj—oéj) (0<r<l-z<t<rmand j=12),
v=0

where Jéj),di{),dié),... are the Fourier coefficients of u j(e”). If we introduce the linear

functionals
P ~. v vY_ ()
T, PO —>Cx' T, ()=,
then each continuous function

Re(m/m+1), ¢")=2ReT, (0 (x.e")) -0 (j=12)

is a Padé-type approximant to u; (e”), with generating polynomial

v =y 1k-a%) 7, cc-loh.

k=0

Definition 1.3.11. The complex-valued function

(m/m+1),(z) =Re(m/m+1), (z) +iRe(m/m+1), (z)
=2ReT, (0" (x,2))+i2ReT, (02 (x,2))- o +ic| (|4 =1) is

said to be a composed Padé-type approximant to u(z)

It is easily verified that, if &.” +ic.” =0, then (m/ m+ l)u (z) is a complex-valued

continuous function on the unit circle C, with coordinates the real parts of rational functions of

type (m, m+ 1) with respect to the variable z . In fact, putting

YDk ety () (x‘l)

m+1 m+l1

VO x) -V, (Z)J

X—z

W(z) =T, [
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and
W (z) = "W (z_l)
(j=12), we obtain

1) % (2) %
(m/m+1),(z)= 2Re%—(z)+i2Re%—(Z).
u V(l) *(Z) V(2) *(Z)

m+1 m+1

Similarly, via the identification
L’ (C)E {f e![-n,x]: f is 27 — periodic},
we can introduce composed Padé-type approximation to every complex-valued 27 — periodic

function in L [— 71',7r] (1< p <£00) as follows.

Definition 1.3.12. Let f = f, +i f, be a complex-valued 21 — periodic function in L" [— 7[,72'].

For j=12, let

() oD )
¢ e ey e

be the Fourier coefficients of fj . Consider the two linear functionals

T, PO >C:x" 5 T, (¢ )= and T, PC)>C:x" 5 T, (¢ ):=c?

\4 v 2

and, for j =12, define again

m
Vi =xm ) v =y [Tl )

k=0

D ()
W * () = ZmW”(lj)(Z—l)', W (z) = Tf,(VmH(x) Vm+1(2)j

X—z

(7, €C- {0} ).The complex-valued continuous function
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(m/m+1),(t)=Re(m/m+1),(t)+iRe(m/m+1), (?)

=2ReT (Q,S)(x,e”))JrlZReT (Q(z)(x e )) i +1002)]

(1) * W(Z) * (ei )
=2Re—; " +12Reﬁ—)(2) " e’ +lCOZ)]
Vm+1 e Vm+1 e

(—7m £t <) is called a composed Padé-type approximant to f . Obviously, if c(()l) + lC(()Z) 0,
the composed Padé-type approximant (m/ m+ l)f (t) to f (t) has coordinates the real parts of

rational functions of type (m,m + 1) with respect to the variable s = s(t) =é'.

The error of such an approximation is given by a direct application of Theorems 1.3.8 and

1.3.9 and of Proposition 1.3.10, via Minkowski’ s Inequality:

Theorem 1.3.13.(a). If u(z) =u, (z)+ iuz(z) € L”(C), I<p<oo (respectively, if

u(z) = u,(z)+iu,(z) is continuous on C) then

(m/m+1), (ei')— u(e”): 2lim,_, {R{V“) (1 ~ ”)];1 [ V() H

it
a\r e xre" —1

4%
(2) ]‘;2 ( m+i1t(x) J }
m+1 xre" —1

.. T n(,1+)1 _ls 1
=;llmr_,1 { J;[“l (V(l) -1 —zt el _1

m+1

+iRe
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+iu2(e"s)Re( Véﬂ(eiis) 1 J ldsy,

V(Z) (r—le—it)rei(t—s) .

m+1
in IF [— 7[,7[] (respectively, uniformly on [— 7[,7[]).

(b). If f(t)z fl(t)+if2(t) el” [— 7[,71'], 1< p<ow, is a 2r—periodic complex-valued
function (respectively, if f (t)= fl(t)+i fz(t) is a 21— periodic complex-valued function,

continuous on [— 7r,7r] ), then there holds

_ _ 91 1 V”51+)1 (x)
(m/m+1),()— f(t) =2lim,_, {Re{ PO (r‘le‘”)Tf‘ (xre” - lﬂ

m+l1

1 /4% (%)
+iRe —~T, |

I Voale™) 1
~tim_t U (S)Re(ym ((e)) e J

m+1

) V(i) —is 1
+zf2(s)Re(V(;”) (lr(ele)t Jre _J] ds )

m+1

in LF [— 7[,71'] (respectively, uniformly on [— 7[,72']).

The property justifying the notation composed Padé-type approximant is proved in the

following Theorem.
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Theorem 1.3.14.(a). Given any complex-valued function u(z) el’ (C ), 1< p <o, the Fourier

series expansion of (m/ m +1)u matches the Fourier series expansion of u up to the +m"”
Fourier term.
(b). Given any complex-valued 2 — periodic function f (t) el” [— 7r,7r] , 1< p< oo, the

Fourier series representation of (m/ m+ l)f matches the Fourier series representation of f up

to the + m™ Fourier term.

Proof. Suppose that

iaveivt and id‘sm)eivt

V=—00 V=—0

are the Fourier series expansions of u(e”) and (m/ m+1)u(e”), respectively. Define the

Poisson integrals of u(e”) and (m/ m+ l)u (e”) by setting

u(re”): ZavrMem and (m/m+l)u(re”): Zdv(m)r‘v‘em,

respectively (0<r <lL-7<t¢t<m). By Theorem 1.3.7, it holds o,k = dlfm) for any
v =0,£1,12,...,m. This proves Part (a). Repetition of this Proof with only formal changes to

substitute u(e”) with f (t) completes the Proof of the Theorem.

Remark 1.3.15. From Theorem 1.3.14, it follows that computing a composed Padé-type

approximant (m/ m+1)u (z) to a complex-valued function u(z)e rr (C ), (or to a complex-

valued 27 — periodic function f (t) el [— 7Z',7Z'] requires only the knowledge of

() ) () ) P —
o,/ 0,05 ..o, j=12

(respectively, the knowledge of

e e el j=12).
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Remark 1.3.16. We can generalize the definition of a composed Padé-type approximation as

follows: If we have to approximate the complex-valued L? — (or simply, continuous) functions

u(z) =u®(2)+iu®(z) = i(a‘f” + iaﬁz))z" (|z| =1)
and

fO=frP0+ir?@) = (C(l)+lC(2))€ (-m<t<7)

V=—00

(with £ and f® 27 — periodic, i.e. satisfying f(l)(— 7)= f(l)(ir) and f(z)(— 7)= f(z)(ﬂ')),

then the functions

C —>C:

zZ 2Re(20“)z" + z"‘T(l) (Q (x, z))} + 12Re(20(2)zv + z”zTum (Qm (x,z))}

v=0 v=0

and

[O'(l) +lO'02)]

C —>C:

zZ 2Re(z ocVz" +z"T o (Q (x, z))j +1i2 Re(z cPz" +z" T (Rm (x, z))J

v=0 v=0

- [0'(()” + iaéz)]
(n; 2 1) are the composed Padé-type approximants to u(z) The functionals
T :P(C)—>C and T 1o PO >C,

associated with the series
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@) = ol wd 1) = Yo

respectively, are defined as above. Further, O, (x,z) and R, (x,z) denote any two polynomials,

with degrees at most m + 1, interpolating (1 - xz)_1 at x (|x| <1). Similarly, the functions

[— 7Z',7Z']—)C:

,-1
tl—)ZRe[ZC(I) m+emlt /(1) (Q (X e”))J+12RC(Z (2) i +€m2t /<z) (Q (x e”))]
v=0 v=0
e +ic]
and

[— 7Z',7Z']—)C:

ny,—1
tHZRe(Zc(D " mltTfm (Qm(x,e”))j+12Re(z (2)ewz mZtTﬂz) (Rm (X,eit))]
v=0 v=0
- [cél) + icéz)]
(n;, 2 1) are the composed Padé-type approximants to f (t) The functionals

T, :P(C)—>Cand T, :P(C)—C

associated with the series
1 NN 2 2 i
100 = zchV V' and £,2(1) = ZCifw

respectively, are defined as above, while Qm(x,z) and Rm(x,z) always denote any two

interpolation polynomials of (l - xz)_l , with degrees at most m +1 (|x| <1).
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1.3.3. Access to the Convergence Theory

In this Paragraph, we study the convergence of a sequence of Padé-type approximants to
a real-valued function. The corresponding problem for the composed approximation case can be

directly apportioned to a coordinate question.

Theorem 1.3.17. Suppose there is a constant K >0 and an open neighborhood U of the unit

circle C into which the generating polynomials V, +1(x) Sulfill
K< | Vm+1(z)| ,forany z € U and any m sufficiently large.
If the family

{V (e,»s): m= 0,1,2,...}

m+l

is an orthonormal bounded system in I [— 72',72'], then

(a). for any real-valued function u € LI(C), the corresponding Padeé-type approximation

sequence {Re(m/m + l)u (z): m = 0,1,2,...} converges to u(z) almost everywhere in C , that is
lim, ,, Re(m/m+1),(z)= u(z), for almost all ze C ;

(b). for any real-valued 27 — periodic function f € L’ [— 7[,72'], the corresponding Padé-type
approximation sequence {Re(m/ m+ l)f (t): m= 0,1,2,...} converges to [ (t) almost everywhere

in [— 7[,7[] , that is

lim, Re(m/m + l)f (t) = f(t), Jfor almost all t € [— 71',7r] .
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Proof. Let u be a real-valued function in I (C) Let also &£>0 and let

{0 <r <l:in= 0,1,2,...} be a strictly increasing sequence satistying

lim,, r,=1 and (rne”)eU,foranynZO and t € [~ 7,7] .

n—w " n

Fix any 7, and note that the function

u(eis )

[—ﬂ',ﬂ'] —C:s Hm
n

is in L' [— 71',7z]. By Mercer’s Theorem, the Fourier coefficients of this function with respect to

the orthonormal family {V, ., (e™): m =0,1,2,...} tend to zero, i.e.

lim, j.éit(;:)_ll/mn(e_is)ds =0.

This means that there exists a M = M (&) such that

S A I

7 ei(t—s) _

- n

forany m > M and any n>0.

Now, by Theorem 1.3.8, there is a subsequence {r, :j=0,12,..} of the sequence

{r, :n=0,12,..} such that

Re(m/m+1)u(e"’)—u(e”)=1im, 2Re (11 it)T Vi (X)

J—>®© - - u I
v o.\re xr, e —1
J J

m+l1
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for almost all ¢ € [— T, 7[] . Denote by D the set of all points ¢ in [— 7Z',7Z'] with this property, i.e.

D= te[—ﬂ',ﬂ]:Re(m/m+1)u(e”):limj_m2Re - (11 ”)7;[ V’”“ifx)J
rle xr, e =

m+1\'n;

Suppose t eDand chose m > M . Then one can finda J =J (g,m) such that

1 T Vm+l (.X') + £

-1 _—it u it
(rnl_ e ) xr, e =1 2

‘Re(m/m +1), (e” )— u(e”)

forany n; > n,. By Proposition 1.3.10, we get

‘Re(m/m +1), (e”)— u(e”} < 2| (

forany n; 2 n,. So, it follows that
‘Re(m/m +1), (e”)— u(e”l <g
for any m = M which implies that
lim, , Re(m/m+1),(z)=u(z)

almost everywhere in C. The Proof of Part (a) is thus complete. Repetition of this Proof with
only formal changes to substitute u , u(e”) and u(e”) by f,f (t) and f (s) respectively shows
(b).
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This Theorem calls for some comments:

Remarks 1.3.18.(a). Since the generating polynomials Vm+1(x) are defined by

V(X)) = 7ﬁ(x_”m,k) , yeC- {O}'

it is easily seen that if there is a constant ¢ < 1 satisfying
‘ﬂ'm’k‘ <c forany m and k,

then there exists an open neighborhood U of the unit circle into which there holds
0<K <inf |V, ()] (m=0,12,.),

for some positive constant K which is independent of m .

(b). If the generating polynomial

Vm+1(x) = yﬁ(x_ ﬂ.m,k)

is expressed in the form

m+1

Vm+1 (‘x) = zblgm)xk >
k=0

then the orthogonality assumption for the family {V (e”):m =0,l,2,...} is completely

m+1

described by the following two conditions:

m+l 2 1
m| _ 1
;‘bk ‘ 7 for any m

and
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m+1

Zb(’")b(n) =0,form<n.

k=0
Indeed, for any m, we have
27[2‘])("”‘ = b(’”)b(’”)j e ™ds
J. m+1 m+1 e S

Vmﬂ(e”}zds =1,

|

T

andif m<n
m+1 m+1 n+l )
22> BB =3 B b j e ds
k=0 k=0v=0

=Im+1 Ve s =

(c). If we write
m+l1

Vi) = [ [ -7,,) = > 6"x*
k=0 k=0

then the boundedness property for the family

o le):m=012,.}

results from the existence of a positive constant o < o satisfying

m+l

D lb

(m)
" ‘ <o, forany m.
k=0
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After these remarks, Theorem 1.3.17 can be rephrased as follows:

Corollary 1.3.19. Let the generating polynomials of a Padé-type approximation

m+1 m

V() = > bx = y[[x-7,,) (m=012,.)
k=0 k=0

be chosen so that

m+1

2.

k=0

2 m+1 JRE—
b,ﬁ’”\ _ L (m=0) and Y B"b" =0 (m<n).
2z k=0

If there are two constants o < © and ¢ <1 fulfilling

m+1

2.

k=0

b,ﬁ’")\<" (m=>0) and ‘ﬂ'm,k‘<c (m=20,0<k<m),

then

(a). for any real-valued function u eLl(C) the corresponding Padé-type approximation

sequence {Re(m/m + l)u (Z)Z m= 0,1,2,...} converges to u(z) almost everwhere on C

(b). for any real-valued 27 — periodic function f € L' [— 7[,7[] the corresponding Padé-type
approximation — sequence {Re(m/ m+ l)f (Z): m= 0,1,2,...} converges to  f(t) almost

everywhere on [— 7r,7r] .
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From Egorov’s Theorem, it now follows a uniform convergence theoretical result:

Corollary 1.3.20. Under the assumptions of Corollary 1.3.19,

(a). for any € >0 and any real-valued function u € L (C ), there is a measurable set Lc C of

Lebesgue measure dA (L)< & such that the corresponding Padé-type approximation sequence

converges to u uniformly on C —L;

(). for any &>0 and any real-valued 27 —periodic function f € I [— 7[,7[]
(f (— 7[) =f (7[) ), there is a measurable set E C [— 7, 7[] of Lebesgue measure dA(E) < & such

that the corresponding Padé -type approximation converges to [ uniformly on [— T, 72'] —-E.

All the above convergence results hold almost everywhere. However, in view of the
Proposition 1.3.10, the Proofs of Theorem 1.3.17 and of its Corollary 1.3.19 can be directly

extended to obtain more concrete results, whenever u or f is continuous:

Theorem 1.3.21. Suppose there is a constant K >0 and an open neighborhood U of the unit

circle into which the generating polynomials Vm+1(x) satisfy

K< | Vm+1(z)|, forany z €U and any m sufficiently large.
If the family

{V (e”): m= 0,1,2,...}

m+l1

is orthonormal in I’ [— 72',72'] , then
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(a). for any real-valued continuous function u on C, the corresponding sequence
{Re(m/m + l)u (Z): m= 0,1,2,...} of Padé-type approximants to u(z) converges to u(z)
everywhere on C , i.e.

lim, Re(m/m + l)u (z) = u(z), fJorany ze C
(b). for any real-valued 21 — periodic continuous function f on [— 72',72'] , the corresponding
sequence {Re(m/m+1)f(t): m= 0,1,2,...}‘ of Padé-type approximants to f (t) converges to
f(t) everywhere on [— 72',7[] ,1.e.

lim,_,, Re(m/m+ l)f ()= f(t), foranytel-nx].

Corollary 1.3.22. Let the generating polynomials of a Padé-type approximation

(x - ”m,k)

m+1 ‘ m
V() = 2 b"x" =y
k=0 k=0

be such that

m+l

2
1 m+l J—
Y| === (m=0) and Y "6 =0 (n>m).
k=0 27[ k=0
If there are two constants o <o and ¢ <1 fulfilling
m+1
Y[p"| <o m=0) and |z, |<c (m=00<k<m)
=0

then

(a). for any real-valued continuous function u of C, the corresponding Padé-type

approximation sequence {Re(m/ m+ l)u (z): m= 0,1,2,...} converges to u(z) everywhere on C
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(b). For any-real valued continuous 27 — periodic function f in [— 72',72'] , the corresponding
Padé-type approximation sequence {Re(m/ m+ l)f (t): m= 0,1,2,...} converges to f (t )
everywhere on [— 7[,7[] .
In [45], we gave a stronger sufficient convergence condition in terms of the entries 7, ,
only: If the interpolation points 7,, , (m > 0,0 <k < m ) are chosen so that
. & !
—-l<nxz,, <l and lim,_, Z—Z(ﬂmk) = —o,
n21 k=0

then, for any real-valued 27 — periodic continuous function f defined on [— 7r,7r] , there holds

lim, , Re(m/m+1),(¢) = f(¢) (—m<t<m).

Another reasonable approach to the convergence problem of Padé-type approximants to

continuous functions can be adopted in analogy with previous results of Paragraph 1.2.2.

Without loss of generality, we may assume that the interpolation is taken in the Hermite

sense, 1.€.

G,(x,z) =R, (x,z)=(1- xz)_l(l —%%j ([23D.

m+1

Let u be again a real-valued continuous function on the unit circle C . Then the Poisson integral
u(z)z u(re”) is harmonic and real-valued into the unit disk D). Suppose the generating

polynomials
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Vm+1(x) = ]/H(x - ﬂ-m,k)
k=0
(yeC- {0}) of a Padé-type approximation satisfy

Vm+1(x) — 0

m—>00 —1
Vm+1 Z

lim

compactly in an open subset @ of C* containing (DXB)U(GX{O}). By Theorem 1.2.12, the
corresponding sequence {Re(m/ m+ l)u (z): m= 0,1,2,...} of Padé-type approximants converges

to u(z) compactly in
glw)= {z e D:(¢,z) € @, whenever |é’| < 1}.

AsDxDc , we see that g(w) = D. This means that

lim,, ,, Re(m/m+1),(z) = u(z),

compactly in D. Since
lim, , Re(m/m+1), (re”): Re(m/m+1), (e”) and lim, ,, u(re”)z u(e”)

r—1

uniformly on [— 7, 7[] , we conclude that
lim, Re(m/m + l)u (z) = u(z), forany ze C .

Via the identification of the space of all real-valued continuous functions on C with the space of

all real-valued 27 — periodic continuous functions on [— 7T, 7[] , we have thus proved the
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Theorem 1.3.23. If the generating polynomials

v, =] [(e-7,,)

of a Padé-type approximation satisfy
Vm+l (x) — 0

m—>o0 -1
V. .\z

m

lim

compactly in an open set @  C2 containing (D X B)u (€Cx{0}), then

(a). for any real-valued continuous function u of C, the corresponding Padeé-type approximation
sequence {Re(m/m + l)u (Z): m= 0,1,2,...} converges to u(z) everywhere on C;

(b). for any real-valued continuous 27 — periodic function f in [— 7[,71'] , the corresponding
Padé-type approximation sequence {Re(m/ m+ l)f (t): m= 0,1,2,...} converges to f (t )

everywhere on [— 7[,7[] .

Combination of Theorem 1.3.23 with Corollary 1.2.14.(a) leads to the following

concrete and trivial example:

Corollary 1.3.24. If the generating polynomials V, ., (x) have the form

v

m+1

(x)=x"" (m=0,12,.),

then the corresponding sequence {Re(m/ m+ l)u (Z)Z m= 0,1,2,...} of Padé-type approximants

to any real-valued continuous function u(z) on C converges to u(z) everywhere on C.

Similarly, if the generating polynomials V. (x) have the form

m+1
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Vo (x)=x"" (m=0,12,.),

m

then the corresponding sequence {Re(m/ m+ l)f (t ): m= 0,1,2,...} of Padé-type approximants
to any real-valued 21 — periodic continuous function f on [— 7Z',7Z'] converges to f (t)

everywhere on [— 72',7[] .

More generally, we quote the following result, whose proof is similar to that of Theorem

1.3.23.

Theorem 1.3.25. If the generating polynomials V, | (x) of a Padé-type approximation satisfy

Vm+1 (x) — 0

m—o ‘ _1j
Vm+1 z

lim

compactly in an open subset @ of C* containing (Cx {0} ) U (5 x U), where U =U (491,02) is a
sector in the open disk of the form U = {re" :0<r<1,—x <0, <t <0, <rx},then
(a). for every real-valued continuous function u on C, the corresponding Padé-type

approximation sequence {{Re(m/ m+1)u(z):m=0,l,2,...} converges to u(z) for any

zeCma;

(b). for every real-valued 27 — periodic continuous function f on [— 7[,7[] , the corresponding
Padé-type approximation sequence {Re(m/ m+ l)f (t): m= 0,1,2,...} converges to [ (t ) for any

e [01’92] :
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Let us finally see how the problem of the convergence for a sequence of Padé-type
approximants is connected with Schur and Szegd’s theories.
As it is mentioned in Theorems 1.3.17 and 1.3.21, the crucial sufficient condition for such

a convergence is the orthonormality of the system
. (e):m=012,.}

into L*[-z,7] (where {V (x): m= 0,1,2,...} is the sequence of generating polynomials for

m+1
this approximation).
Remind that, more generally, if f (s) is a nonnegative 27 — periodic measurable real-

valued function on the real line with

1 T
- j f(s)ds =1,

then a unique system of polynomials {Vm +1(x) m= 0,1,2,...} exists such that

e forall m=>20, V !

el is real and

( ) has precise degree (m + 1) and the coefficient of x™"
positive, and

e forall m=>0,n>0,

J. +1 l? n+1 (6” )f(S)dS m+1 n+l 7

where 0, ., ., is the Krénecker symbol. One can then obtain some interesting recurrence results

about the form of V,:1(x), dues to the connection between Schur and Szegd’s theories. This
connection is often attributed to Akhiezer [1], but it appears earlier and in greater detail in
Geronimus [63] and [64]. It is based on important recurrence relations which were first given in

Szegd’s book [138]. Denoting by Un.1*( x ) the polynomials

mHVmHh/ )

these relations were written by Geronimus in terms of the monic polynomials

Vm+1(x) = Vm+1(x)/0m+1*(0)
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in the form

Vm+2(x) = XVm+1(x) - am+1 0m+1*(x ): m > 0

for certain parameters a,,, €C, m = 0. Since

1 fe’ +x
g(x) = — [=——/(s)ds
2 < e —x

has positive real part in the open unit disk and value 1 at the origin, the function

Dy - L £
xg(x)+1

belongs to the class S (D) of all analytic functions which are bounded by one on the unit disk D .

Geronimus showed that the Schur parameters for CD(x) coincide with the numbers a,,,, in the

recurrence formula. In current terminology, the numbers V, ,(0) = —Z are called Szego

m+2
parameters. Remind that, following Schur’s construction, there is a one-to-one correspondence
between S (D) and the set of all sequences {y,,,, : m = 0,1,2,... } of complex numbers which are
bounded by one and such that if some term has unit modulus, then all subsequent terms are zero.
In fact, given any @ (x) € S(D), define a sequence
@, (x),D,(x),D4(x)... in S(D)
by setting @, (x) = @ (x) and
D, (x)-,(0)

-0, ), x)’

If |(D ;(0)| =1, for some i, then @,(x) is constant and we take @ ;(x) =0 forany j >i. This

D, (x)= m=1.

occurs if and only if @ (x) is a finite Blaschke product of i factors:

x—=b x-b, x-b

D(x)=c—=—=..—=",
1-bx1-bx 1-bx
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where b,b,,...,b, are points in D and where |c| =1. The numbers y, ., =D, ,(0) (m =0) are

the Schur parameters for @®(x). This method of labeling S (D) by numerical sequences is
known as the Schur Algorithm and is due to Schur ([126]). The Schur Problem, or Carathéodory-
Fejér Problem, were to find conditions for the existence of a function in S(D) whose initial Taylor

coefficients are given numbers ?,,?,1,,...,f,. In [126], Schur showed that such a function exists

if and only if the lower triangular matrix

is bounded by one as an operator on complex Euclidean space, and he determined how all

solutions can be found. The method was adapted to Pick-Nevanlinna interpolation by Nevanlinna

in [48]. This variant of the problem asks to find a function in S (D) which takes given values

W, W,,...,w, at specified points z,,z,,...,z, in D.

m

Under the same assumptions for the function f (t) and the polynomials Vm+1(x), we also

obtain some interesting limit properties, when f (t) has a factorization
fo=|Fl ),
where F (z) is an outer function in the Hardy class H 2(D) on the unit disk D and F (0) is
positive. The term “outer” means that the functions
F(Z),ZF(Z),ZzF(Z),... ,
span a dense subspace of the Hardy space, and, in particular, that F (Z) has no zeros in D . For
all points x in the unit disk D, there holds

1
F(x)

The representation of f° (t) in terms of F (Z) is called a spectral factorization in applications.

limm—>oo Um+1*( X ) =

HELLENIC ARMS CONTROL CENTER PUBLISHING

138 published on line as an e-book in 2007

www.armscontrol.info




N.J.DARAS PADE-TYPE APPROXIMATION TO FOURIER SERIES

1.4. Applications
1.4.1. Numerical Examples

In this Paragraph, several examples are considered, making use of Padé-type

approximants to 277 — periodic real-valued I — functions.

Example 1.4.1. The function
f.(t)=e" (—r<t<rm and a=0),
has Fourier series representation

em—e | 1 & (-1)
F({t)=—|—
1) 7 2a+v=1v2+a

5 (a cos(vt)—vsin(v t))}

on the interval — 7 <t < 7. As it is well known,
f.(t)=F,(t) forany t € (-x,7).
However,

F (£r)=cosh(ar) # " = f,(+7x),

and thus we may consider the following 27 — periodic extension for f

fﬁ):{ e"if —r<t<nm

cosh(arn),if t =7

on [— 7[,72'] :

~

and then approximate f (?) in the Padé-type sense.) Evidently, for every ¢ € (-7, ), there

holds
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ar -

f.(t)=e"=F,(t)= i[i + i V(z_i);z (acos(vt)—vsin(v t))}

T

e Sl (e )(a i s i 1y e — )

s —ivt
" 2arx Z 27[(V2+a2) ~ 27[(V2+a2) (@=ivie

g Ve e Rar i) 5 D)

= 27z(v2 + az) = 2rn(a—iv)
Define the C-linear functional T . P(C)—>C associated with f, by

o (D= Naviv)
= ) (v=012,..).

~
o
=
<
~—
Il
19}
< =

Given any matrix
M = (ﬂ-m,k )mZ0,0SkSm

with complex entries 7, , € D (<:>‘7Z'm) k‘ < 1), then, for any m > 0, a Padé-type approximant to

f. (t) is a function

where QO (x, e t) is the unique interpolation polynomial of (l — xe'’ )_1 at

it it it
(700 € ) (715 o 7,007

and
Vm+1(x) = yﬁ(x_ﬂ-m,k)
k=0

is the generating polynomial of this approximation ( » € C— {0} ).
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We will consider different cases:

(a). First, choose m =4 and 7,,=7,, =7,, = 7,5 =r,, =0. Then

e —x 2 16 + a? 9+aq* 4+ g*

T (Vs(e"”)—VS(x)j B e‘"(e“” —e‘“”)[ a+4i o a+3i g a+2i
fa -
el a+i +e—4itl
l+d’ al
V<eit)_eSit
5 - b}

and

et —e " Re{(a + 4i)e4”} Re{(a + 3i)e3”} Re{(a + 2i)ez”}
R/, 0= 61a*  9+a® | 4+d

1+a* Z

~ Re{(a+i)e”}+ 1 }

Since
Re{(a + 4i)e4”}= acos(4t)—2sin(4¢), Re{(a +3i)e’" }= acos(3t)—3sin(37),
Re{(a + 2i)e2”}: acos(2¢)—2sin(2¢), Re{(a +i)e" }= acos(t)—3sin(z),

it follows that

Re(4/5), (1) = l[i + 24: (2-1)V2 (acos(ve)—vsin(v t))} .
’ T

2a SV +a
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In other words, if m=4 and 7,,=7,, =7,,=7,;=m,,=0, then the Padé-type
approximant Re(4/5), (¢) is nothing else than the trigonometric polynomial formed by

summing exactly the first five terms in the Fourier series F) (t) of fa(t) Unfortunately, this

choice is not very successful because of the failure of the corresponding approximation in some

trivial (but characteristic) cases. If, for example, ¢ = 0 , then

Cdlem - 430-110a> - 104" 1
Ret@/9, O === {(16+a2)(9+a2)(4+az)(1+az)+M}’

And, for a =1, we obtain
Re(4/5),(0) ~5.0116 (while in such a case fl(O) =1);
similarly, for a = -1,
Re(4/5), (0) ~5.0116, (while f,(0) equals 1).
Further, if £ =1, then

a(—0.5)+3.4641016 B a(-1) N a(—0.5)—1.7320508
16 + a? 9+ q* 4+ g*

Re(4/5), (1) = ——= [
¢ T

3 a(0.5)—0.8660254 N i
1+ a? 2a |’

and, for a =1, we have

Re(4/5)f] (1) 7.3521621[0.1743589+0.1-0.4464101+0.1830127+0.5]=3.7566717

(while in such a case f(l) =e~2.7182818).
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i
(b). Choose m =3 and 7, , = 70y, = 73, = 0,755 = X Then

3
V,(x)= x* +i%,

it ar _ -ar ] | ] —ai ;
T, V4(e 7') V,(x) _e e 1 R a+l2 o+ a+2§ N 1 a12 R
“ e —x 2 a 2a l+a 44a° 2+2a

—a-3i —-2+ai| 5
+ > + 3 e ,
9+a 8+2a

v, (e"” ) = e“”{l + i%ﬁ}

Therefore,

1 i a+i | , |a+2i l1—ai | ,,
“ e ol 2a 142 Tava® 2124 )
Re(3/4), (t):e e Re| L9 a l+a a a
Ja 7Z.

it

1+ie—
2
—a-3i —-2+ai
+
9+a* 8+ 24’ 1
+ . -—
e 2a
1+i—
2

Let us give a more explicit form of Re(3/4), (¢). Since
e sintz) . cost sint) (costY 5.
I+i—=|1-——|+i—, l-—— | +| — | =—sint,
2 2 2 2 2 4
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i a+i |, a 1 1 .
—— Sle =|- 5COSt —| —— > |sint
2a l+a l+a 2a l+a
. a . 1 1
+1] — —sinf+| —— — |cost |,
l+a 2a l+a

a+2i I—ai |, a 1 2 a i
+ =l = >+ - [cos2t— = — [sin2¢
4+a’ 2+2a 4+a’ 2+2a 4+a 2+2a
+i a ~+ ! > [sin2¢ + 2 > : 5 [cos2t |,
44+a’ 2+2a 4+a” 2+2a
a3 —2+ail . - 2 .
a §l+ +azl it = ( 612+ 2)cos3t—( a - 3 zjsmf&t
9+a 8+2a 9+a” 8+2a 8+2a~ 9+a

. —-a -2 ) a 3
+1 -+ > [sin37+ > = > [cos3t |,
9+a 8+ 2a 8+2a 9+a

we have

Re(3/4), ()=— < =" {[5 ! }

5_4sint 1« 8a 2+24°

1 1 a 1 . —5a 1
+|——- >+ >+ > |sin + >+ — |cost
2a l+a 8+ 2a 4+ 4q 4+4q 4+a

-2 a ) 9a 1 -3
+ ~+ > sin2f+ ~+ ~+ > cos2t
4+a 2+2a 32 +8a 2+2a° 36+4a

—-a 3 . a
+ >+ > |sin37 + >+ 5 cos3t
| 8+2a” 9+a 9+a” 4+a

[ —a -1 .
+ -+ 5 sin4t ;.
|18+ 2a” 8+2a
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In particular, for a =1, there holds

1, ¢ ¢ {15+9sint—17cost—85in2t+l4cos2t
5—4sint 10x

Re(3/4), (f) =

+8sin37 —12cos 37 — 6sin 41},
and if £ =0, then
Re(3/ 4)f1 (0) =0 (while £,(0)=1).
Further, if £ =1, then
Re(3/4)fl (1) =8.4068037 (while f,(1)=e=2.7182).
As in the preceding case, these disappoint approximation results attest the failure of our choice

i
Tyg =3y = T3, = 0 and Tyy =——=

Before I conclude this Example, I must clear my conscience. I have probably convinced

you that any elementary choice of 7, , ’s leads to a problematic approximation. Let me show

why that is not entirely true.

(c). Let m = 3. We choose the zeros of the Tchebycheff polynomials

TCH,,(X) = cos(m Arccos X)

y . . . 1 2k +1
divided by NS interpolation nodes, i.e. 7, = —= €0S - |

N

| i _LCOSE}—” T _LCOSS—E T _LCOSﬂ'
VT TRy ety |

N
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V,(x) = x* +0.282x" —0.318x” —0.067x + 0.012,

V(e ™)~ e (1+0.282¢" —0.318¢" —0.067¢"" +0.012¢*"),

and
ee—ll T V4(e—it)_ V4(x)
V4(e_it) 1 e _x
1 1 17, 2i ' 17,
A 0282 e 4| TS 0282 9T 0318 e
e’ —e a 1+a a 4+a l+a a
27 14+0.282¢" —0.318¢*" —0.067¢™ +0.012¢*"
[_“ T 028297 L0318 41! —0.0671}33”
+a 4+a 1+a a
1+0.282¢" —0.318¢°" —0.067¢™ +0.012¢"
It follows that
e v, (e’” )— V,(x)
Re(3/4), (t) =2Re 7| L —c
( )fa() |:V4(e—lt) f[ e—tt_x 0
—it —it ) _ ar __ —anr
=2Re| —7—T, AG ) Vi) )| e —e
V4(e"’ ) ‘ e’ —x 2ar
=2 ~€  {1+0.282c0st—0.318c0s2 —0.067 cos3 +0.012cos 4¢)
T
+(0.282sin7—0.318sin2¢ — 0.067sin3¢ + 0.012sin 4¢)* }_1

1185137 0.21363a 03368942  0.067a
a l1+a* 4+a’ 9+4’
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{1.521358 0.51188 0.99 } )
+ - - sint
1+a® 4+q* 9+a

[0.426456 0.839938 0.128708a 0.306a}

+ - + cost

2

2 2 +
a l+a 4+a 9+a

0.25594 2.135048 0.846 | .
+ = —+ > sin2¢
l1+a 4+q 9+a

0.677604 0.128708a 1.091524a 0.2822a
+| - — —+ = 5 cos2t
a 1+a 4+a 9+a
0.33 0.564 3 .
+| - = - = > sin 3¢
1+a° 4+a 9+a
0.130616 0.306a 0.282a a
+| - + —+ = 5 cos3t
a l+a 4+a 9+a
+[0'012} cos4t}
a
B ellﬂ _e—azr
2ar

In particular, for a =1, there holds
Re(3/4), (t)
~7.35211621{( 1+ 0.282cos? —0.318cos 2¢ — 0.067 cos 3¢ + 0.012 cos 4¢)’
+(0.282 sint —0.318 sin2 ¢ —0.067 sin3 ¢ +0.012 sin4 ¢)’ }_1
{[1.0176432]

+[ 0.559303]sinz +[ 0.0628286]cos?
+[-0.2144396] sin 27 + [~ 0.5518532] cos 21
+[-0.5778] sin3¢ +[- 0.021216]cos3 ¢
+[ 0.012] cos4¢} —3.676081
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Thus, if £ = 0, then
Re(3/4), (0) ~ 0.9455091  (while f£,(0)=e" =1);
if t =1, then
Re(3/4), (1) ~ 2.8227598  (while f;(1) = €' ~2.7182818);
if t = e, then
Re(3/4),, (e) ~15.968062 (,while f,(e) = e ~15.154261).
However, if ¢ = /3 , then

Re(3/4), (V3)~ 7.66529587 (while £;(v3)= e ~ 5.6522335),

andif t = z, then
2

Re(3/4), (%J ~5.7613728 (while fl(%j ~4.810477).

Example 1.4.2. Let f be the real-valued function
fe)=1* (teR).
As it is easily verified, the Fourier series F' (t) of f into [— 7[,7[] is given by

2 3 " o
F(t)=%—4[cost—cos[2—;}+cosr’—f}—,,}:%_ Z 2( 21) z

t t = v
(v=0)

(— 7 <t < ). Define the C-linear functional 7' '+ P(C) > C associated with f by
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N.J.DARAS PADE-TYPE APPROXIMATION TO FOURIER SERIES

For any matrix
M= (” m.k )mZ0,0Sksm

with complex entries 7, , € D (<:> ‘ﬂmk‘ < l), a Padé-type approximant to f (t) is a function

Ve ™)~V (X)J

e —x

Vm+1 (e_”) —Cy.

e—itTf(
Re(m/m+1),(t) =2Re

As usually,
Vm+1 (x) = 71_[ ('x - ﬂ-m,k )
k=0

is the generating polynomial of this approximation (y €C — {0} ).

@. Itm=4andrn,,=n,, =r,,=n,5;=nr,,=0,then

5
X

£ (x) 5

e_itTf MJ — 26—51'1 (7[_2_6” N eZit ~ e3it .\ e4,‘, j)
e X

v (e‘i

and

o~

e 6 2 9 16
)

=5it
e

2
Re(4/5), () = % - 4(cost

cos2t cos3t cos4dt
- 2 + 32 - 42 :
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This means that Re(4/ 5) ; (t) is the trigonometric polynomial which equals the partial

sum of the first five terms in the Fourier expansion F' (t) of f (t) Indicatively, we have

t £(t) Re(4/5),(¢)

0 0.0000000 0.0954237
_z

2 2.4674011 2.5398681

z

8 0.1542125 0.1313749
N3z

4 1.8505508 1.9704128

1 1.0000000 0.1091051

e 7.3890559 7.077193

(b). Ifm=3 and 75, =7, =7;, =0, 7,; =—1 ,then

V4(x):x4 +x°,

—it

—it
e, [MJ ~ ¢ (3.2898681+1.289868 l¢" —1.5¢>" +0.2777777¢""),
e —X

V4(e—it):e—4it(l+eit)

and
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4.5797361+3.0797362 cost —1.2222224 cos 2t + 0.2777777 cos 3¢

Re(3/4).,(¢) =
( )f ® 1+ cost
—3.2898681.
Thus,
t 1) Re(3/4), (1)
0 0.0000000 0.0676457
— 7r/2 24674011 2.5120904
7z/8 0.1542125 0.1755879
ﬁ,,/4 1.850508 1.8178327
1 1.0000000 0.9153782
e 7.3890559 6.424624
7z/3 1.0966227 1.3824601
- 7r/4 0.6168502 0.5534881
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(¢).If m =3 and

or simply

(0 <k <3), then
Re(3/4) () ~ 2{[1+0.282cost — 0.318 cos 2t — 0.067 cos 3¢ + 0.012 cos 4¢]°

-1

+[0.282sin —0.318sin 2¢ — 0.067sin 3¢ + 0.012sin 4] |
{2.9347573+0.9873185cost + 0.0469156 cos 2¢
+0.1130685cos 3¢ +0.0394784 cos 4t}
—3.2898681,

or

Re(3/4) () = 2{l + 0.5cos? — cos 2¢ —0.375 cos 3¢ + 0.125 cos 4t

-1

+[0.5sin 7 —sin 2 —0.375sin 3¢ +0.125sin 41" |
83504691 + 0.4763827 cos — 7.0232814 cos 21
—0.4840065cos 3¢ + 0.4112335 cos 47
~3.289868,

respectively. Both these two approximants seem to be not efficient, so their use is not

recommended.
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Example 1.4.3. Let f be the real-valued non-negative function f(¢) = | t| (t €R). The Fourier

series of f into [— 7z,7z] is

v=—00(v#0)

F(t):z—i(cosﬁCosz3t+—60825t+...j 4 (Gl 2_1 e,
2 3 5 VA%

Define the C-linear functional T 1 P(C) > C associated with f by

%,ifv=0
Tf(x )=cv: (—l)v—l ) '
i v=123,..

/2%

Observe that

¢, =c, =¢, =...=0 ,while ¢,,c;,c;,C5,... 2 0.

For any matrix

M= (77 m.k )mZ0,0SkSm

with complex entries 7, , € D, a Padé-type approximant to f (t) is a function

-~ (e"")—zmﬂ (x)J

—it

eitTf{
Re(m/m+1),(#)=2Re

- -c, ,
Vm+l (e_lt ) ’
where
Vm+1 (x) = J/H ('x - ﬂ-m,k)
k=0
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is the generating polynomial of this approximation (y €C— {0} ).

1
@.Ifm=3and 7, =75, =7, =735 = 7 then

V,(x) = ﬁ(256x4 —256x° +32x* —16x+1)

e —x

oor e

—4it
=% 11287 — [E+ 1287[}6” + {E+ 16;:}2” - [ﬂ+ﬁ 4 87[}23” ,
256 T .4 or =«

—4it

V()= 6256 (256 —256¢" +32¢> —16¢™ +e*"),

and therefore

Re(3/4) (1) = 2{[256 — 256 cos + 32 cos 2¢ — 16 cos 3¢ + cos 4t ]’

+[256sint +32sin 2t — 16sin 3¢ +sin 4] |
(254941.5 — 324774.49 cos £ +92997.148 cos 21
—23283.974cos 3t + 402.12385 cos 41}

—1.5707963.

Thus
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t 1) Re(3/4),(t)
0 0.0000000 0.3828912
T
4 0.7853981 0.9379537
_r
6 0.5235987 0.894674
1 1.0000000 1.0112661

®).fm=4and 7,,=7,, =7,,=7,,=0,7,, =1, then
VS()c)zx5 +x*,

oot

e —x

=e™ ([Co]"' [Co +¢ ]eit + [Cl +c, ]em + [02 +¢ ]em + [03 +cy ]64” )’

V. (e"” ) =" (1 +e" )

Hence
Re(4/5)f (®)
= I {2.5049728+2.2831853cost—0.7073552cos2t—0.14147lcos3t
1+ cost
—0.0707355cos 4t}— 1.5707963 .
Thus,
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N.J.DARAS

t 1) Re(4/5),(t)
0 0.0000000 0.3635019
_Z
4 0.7853981 0.9423442
_r
6 0.5235987 0.6606627
1 1.0000000 1.2120203

©.fm=4and 7, =7, =7,, =7, =7,, =0 , then

Vs(x)zxs,

e_itTf(Vs (e—it)_Vs (x)j =it (_ie:ﬁt _zeit +£j,

e —x

Vs (e—it)z oS
It follows that
2 . 2 . 4 4
Re(4/5),(t)=2Re T Lo et |- T ost——cos3t
2 97 .4 2 2 97

and indicatively we have

b
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t 1) Re(4/5),(¢)
0 0.0000000 0.1560857
_r
4 0.7853981 0.7705152
_r
6 0.5235987 0.4681385
1 1.0000000 1.0756475
e 2.7182818 2.673454

Remark 1.4.4. In the preceding two Examples (:1.4.2 and 1.4.3) our indicative results

corresponding to the choice “m =3,7,, =7, =75, =0, 7;; =—1 7, seem to be persuasive
and painless: the fact that the interpolation point 7, ; lies in the unit circle C (in other words, the

fact that ‘7[3’3‘ =1) does not steal in our special computations. The pathology of such a choice

will be apparent in the following Example.

Example 1.4.5. Assume that 7 € [0,1) . Let f, be the real-valued function

l+re" ) rsint
1-2rcost+r%

fLRORit—> f(1)= Im(2(l —re”)

As it easily verified, the Fourier series expansion £, (t) of f, (t) on [— 7[,7[] is
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F.()= irv sin[vt] = i%e"” + i—e_ Zv vt — icvem,
v=1 V=—00

with

cO:Oanch=Z: forany v #0.

Define the C-linear functional T + *P(C) > C associated with f. by

0,if v=0

T, (xv)=0v =q-ir’ ifv=123,. "~

and suppose the complex infinite triangular matrix
M = (ﬂm,k )mZ0,0SkSm

is given. For any m >0, a Padé-type approximant to f, (t) is a function

V€™ )=V (x)]

— (—mr<t<nm),
™)

e T, (
Re(m/m+1), (t)=2Re

where
Vm+1 (x) = 7H(x - ﬂm,k)
=0
is the generating polynomial of this approximation (y € C— {0} ).
@.If m=3and 7;, =7;, =7, =0, 7;; =—i ,then

V,(x)= xt+ix?,

e—itTfy(V4<e_lit)— V4(x)j:e—4it([co]+[cl +l-co]eit +[Cz +l-cl]62it +[c3 +icz]e3it),

e —X
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v, (e_” ) =e (l +ie" )
Hence,

Re(3/ 4)fr ®)
r ) . 2
{—l+2s1nt—rcost+rsm2t+ [l—r ]cos2t

"2 (1—sin7)
+r?sin3t+r cos3t+rsin4t}.

Observe that Re(3/4), (7) is well defined everywhere on [— 7[,7[], with the exception of the
point # = —. This is a consequence of the choice 7,5 = —i , which in particular implies

‘7[3’3‘ =1 (<:> T35 € C).

We have
t £, (t) Re(3/4), (1)
0 0 -0.57°
z 0.8660254r 3.7320507 7(0.7320508 1.5/ +0.5/7 )
3 (1+7)
-z 0 0.5r(1-r)
z 0.7071067r 1.7071067 (0.4142135 - 0.41421357 +0.7071067 * )
4 | 1-1.4142135r + 1>
oz —0.5r 0.3333333r(0.5-2.5980762r — 1.5,
6 | 1-1.7320508r + r*
z 0.5877852r 12129599 (0.4845874 +2.0388417 — 03090169 )
1-1.6180339 7 + 12
T r
5 1472 undefined
HELLENIC ARMS CONTROL CENTER PUBLISHING
159

published on line as an e-book in 2007
www.armscontrol.info




PADE-TYPE APPROXIMATION TO FOURIER SERIES N.J.DARAS

and in particular

7 1/8 1/2 3/4
t fis) | ReGB/4), |  fi.(6) | ReB/4), O fiul) | Re3/4), @
0 0.0000000 —0.00097656] 0.000000 —0.0625000 | 0.0000000 | —0.2109375

0.0855333 0.2576809 0.1924499 0.1997595 | 0.2120878 | —0.3126503

—71 0.0000000 0.0615234 0.0000000 0.1875000 | 0.0000000 | 0.1640625

T 0.1053686 0.0962008 0.651239 0.3276649 1.0567713 | 0.6418305

7| —0.0782111 | 0.00632594 | —0.6510847 | —0.1540062 | —1.4233557 —0.5730767

0.0903316 0.1062575 0.6664487 0.9589957 1.2632407 | 1.6737902

w |y

2k +1
(b).If m=3 and 7, =COS 7|(k=0,123):

730 =0.9009688, 7, =0.2225209, 7,, =-0.6234898, 7, =1,
then

V,(x)= x* +0.5x° —x* —0.375x +0.125,
-it)
e"'T, (W] e ([c,]+[c, +0.5¢,]e" +[c, +0.5¢, — ¢, |e*"
+[e; +0.5¢, — ¢, —0.375¢, "),
Ve ™)x e (1+0.5¢" — e —0.375¢*" +0.125¢*" )
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Since

¢, =0, ¢, =—i0.5r, c, = —i0.5r", ¢, = —i0.57" ,
we obtain

Re(3/4), (1) ~ (-r){1+0.5cost — cos 2¢ — 0.375cos 3¢ +0.125 cos 4¢]

-1

+[0.5sinz —sin2¢—0.375sin 31 +0.125sin4t]2}
{1.125/> —0.3125+ =1.0625 sin ¢ + |- 0.5+* —1.125r—1.3125sin 2¢

+|- 72 +0.57 +1.375]sin3¢}.

Indicatively, we have

t 1,(0) Re(3/4), (1)
0 0 0
z 0.8660254r © 0.8660254r(0.625-> —1.4375- — 2.375)
3 (1+7r)* 4.5468749
-7 0 0
z 0.7071067r ~ #{0.0883883r —0.9924175r +0.0183059)
4 | 1-1.4142135r+7° 2.3765699
| 0.5r ~ r{0.8705127, +0.6305285r + 0.2929083)
6 1-1.7320508r + r* 15370791
z 0.5877852r r(0.7653264r +0.7775396r +0.5654351)
5 | 1-1.6180339r+r° 2.2188258
z r 21252 —0.8125- -2.4375)
2 1477 5.28125

HELLENIC ARMS CONTROL CENTER PUBLISHING
published on line as an e-book in 2007 161
www.armscontrol.info




PADE-TYPE APPROXIMATION TO FOURIER SERIES

N.J.DARAS

In particular, there holds

7 1/2 3/4

tl o S | ReG/4), @ fi.() | ReB/4), (1] fu) | Re(3/4),, ()
0 0.0000000 0.0000000 0.0000000 0.0000000 | 0.0000000 0.0000000
T 0.0855333 0.06059 0.1924499 0.2797496 0.2120878 0.4430566
3
—71 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
T 0.1053686 0.0621036 0.651239 1.0849208 1.0567713 24146128
4
7 —0.078211 | —0.0313358 | —0.6510847 | —0.2686265 | —1.4233557 —-0.612591

6

z 0.0903316 0.0380035 0.6664487 0.2581402 | 1.2632407 0.5337572
5

L3 0.1230769 0.0279106 0.4000000 0.1030281 0.4800000 0.1237382
2
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(©.1f m=3 and 75, =75, =73, =735 =0 , then

Re(3/4), () = irv sin[vz],

and
r 1/8 1/2 3/4
t fislt) [ ReG/4), 0| fiplt) | ReB/4), (¢  fyl) | Re(3/4), (1)
0 | 0.0000000 0.0000000 0.0000000 [ 0.0000000 | 0.0000000 0.0000000
T 0.0855333 0.0270632 0.1924499 | 0.649519 0.2120878 0.7713038
3
=7 0.000000 0.0000000 0.0000000 | 0.0000000 0.0000000 0.0000000
T 0.1053686 0.1053943 0.651239 0.6919419 1.0567713 1.3911406
4
7 —0.078211 —0.0779847 —0.6510841 —0.5915063 | —1.4233557 | —0.9592547
6
z 0.0903316 0.2239326 0.6664487 | 0.6505387 1.2632407 1.377035
5
T 0.1230769 0.1230468 0.4000000 | 0.2500000 | 0.4800000 0.328125
2

Example 1.4.6. Let [ (t) be the function

w
——,if —r<t<0

f(=

%,if0<t<7r,
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with Fourier series expansion

F(t) 22 SIH[(‘z/V l)t] Z l[(_l)v — l]eivt

1 — 2v
(v0)
Define the C-linear functional 7, :P(C) —>C by
i ( 1" ]
v — if v=123,
Tf (x )= ¢, = 2v f
0, if v=0.

If
M= (ﬂ-m,k )mZ0,0SkSm
is a complex infinite triangular matrix, then, for any m >0, a Padé-type approximant to f (t) isa

function

—it

[Vl )=P (x)j

ltT(
Re(m/m+1),(t) =2Re

” (e”") (—r<t<nm),

m+l

where

m

Vm+1 (x): 7H(x_7zm,k)

k=0

is the generating polynomial of this approximation (y €C— {0} ).

1 1 1
a.ifm=3and r,,=-1, 7, =——,7,, =——, 7,, =——,then
( ) 3,0 3,1 2 3,2 3 33 4

7, (x)= i(24x4 +50x +35x> +10x +1),

e —x

—it —4i
e-”Tf(V“ G .)_ Vs (X)J = e24’ ([l24¢, Je" +[50¢, Je* +[24c, +35¢, ™).

—4it

v, (e"”’ ): 62—4<24 +50e" +35¢*" +10e* +e*" )

It follows that

HELLENIC ARMS CONTROL CENTER PUBLISHING

164 published on line as an e-book in 2007

www.armscontrol.info




N.J.DARAS PADE-TYPE APPROXIMATION TO FOURIER SERIES

Re(3/ 4)f (®)
6396sint +6120sin 2¢ + 20165sin 3¢

[24 +50cost +35cos 2t +10cos 3¢ + cos 41‘]2 + [50 sint +35sin 2¢ +10sin 3¢ + sin 4t]2

and therefore
t f(t) Re(3/4)(1)
T
5 1.5707963 2.5764705
T
- 5 —1.5707963 —2.5764705
T
E 1.5707963 1.8906633
T
- ? —1.5707963 —1.8906633
T
Z 1.5707963 1.3992217
T
_Z —1.5707963 —1.3992217
T
g 1.5707963 1.1066319
T
_g —1.5707963 —1.1066319
T
g 1.5707963 0.9153747
T
_g —1.5707963 —-0.9153747

®).lf m=4and 7,,=n,, =n,,=m,;=0,7,,=-1,then

Vs(x)zx5 +x*,

165
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ve)-v, (x)j

—it
e"'T, ,
f( e—ll —x

= e_”Tf (e_4” +exte e +xt e e M x+e X + x° )

=2it 2
"x

i . )i N ui
=" (cle” +ce +ee’ +ee ”),

V5<e—it):e—5it (1+eiz)'

If follows that
Re(4/5)f(t) _ 6sint + 4sin 2¢ + 2sin 3¢ + sin 4t ,
3(1+cost)
which, in particular, gives
t 1) Re(4/5),(t)
% 1.570963 1.3333333
T
—5 —1.570963 —1.3333333
? 1.570963 1.7320508
_% —~1.570963 —1.7320508
% 1.570963 1.8856181
_% —1.570963 —1.8856181
% 1.570963 1.8096081
_% —1.570963 —1.8096081
% 1.570963 1.6666666
_% —1.570963 —1.6666666
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©.Ifm=4and 7, =7, =7,, =75 =7,, =0, then

4 v+l .
Re(4/5) (1) = z I+ ( D sin vt] 2(sin t+ SH;3tj

v=l

and
T T
Re(4/5),| 7 | =13333333, Re(4/5)f( 7 |=-13333333,
T T
Re(4/5),| 7 |=1.7320508, Re(4/5)f( 5 |=-1.7320508,
T T
Re(4/5),| 7 | =18856178, Re(4/5)f( o |= 18856178,
T VA
Re(4/5),| | =1.809608, Re(4/5)f( < |= 1809608,
Re(4/5), % = 1.6666666, Re(4/5)f( % — —1.6666666.
Example 1.4.7. Let f be the following function:
A
f
0,2) (,2)
1 Jif t=—-1
. . 2(i+1j,if—7z<tso
SO =1 \x
2 f0<t<nm
> 1 Jf t=
(m.0) 0,0) (.0) yi=x

As it is easily verified, the Fourier representation of f is given by

0

F(t)=; Z[l C ) cos(ve)+ 0™ sin(vt)}

1 (vr)

3.5 1=EDT EDT
= > +V=Z_Oo|: (Vﬂ.)z +1 - i|e
(v#0)

(—m <t < 7).Let us define the C-linear functional
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3
5 ,lf v=0
T, P —>Cix’ 5 T, (x" )= —Cy
S+ fv=123,..
(vrr) v
For any complex triangular matrix
M = (ﬂ-m,k )mZ0,0SkSm
and any m >0, a Padé-type approximant to f is a function
—it (Vmﬂ (e_it )_ Vi (X)J
e T, .
. e—lt —x
Re(m/m+1),(t)=2Re — -c, (—m<t<nm),
Vm+1 ( )

where
Vm+1 (X) = 71_[ (‘x - ﬁm,k )
k=0

is the generating polynomial of this approximation (y €C— {0} ).

1
@.lf m=3and 7;, =7, =7;,, =0, 7;; = 5 then
3
V,(x)=x*+=—,
efisz ( v, (e: -V, (x)j
e’ —x
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4

Re(3/4) ,.(t) = ——
( )f() S5+ 4cost

{3.9526423 +0.6366197sint +3.5066059 cost +0.251163 cos 2¢

—0.1061032sin 3¢ +0.0450316 cos 3t — 0.0506655 sin 4t}— L.5.

In particular,

t 1) Re(3/4),(t)
0 2.0000000 1.9468554
T 1.0000000 1.1086712
- 1.0000000 1.1086712
i
> 2.0000000 2.0553617
T
B 1.0000000 0.9113552
z
3 2.0000000 2.0031648
_r
3 1.3333333 1.3730748
z
4 2.0000000 1.9619859
_r
4 1.5000000 1.5786325
VA
] 2.0000000 1.9466674
_r
5 1.6000000 1.596714

(b).If m=3 and 7, =75, =7;, =735 =0, then
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v, (x) =x*
and
3 G| 1= D" .
Re(3/4),. (1) ==+2) | ——=—cos(vt)+——sin(v¢
(/4),(0=3 Z[ = (ve) (ve)
=1.5+0.6366197sin¢ + 0.4052847 cost —0.3183098sin2¢ +0.2122065sin 3¢
+0.0450316co0s3¢.
Indicatively, we have
t 1) Re(3/4),(t)
2.0000000 1.9503163
s 1.0000000 1.0496837
-7 1.0000000 1.0496837
V4
B3 2.0000000 1.9244132
Vs
_E 1.0000000 1.0755868
T
? 2.0000000 1.9332752
Vs
_E 1.3333333 1.3819462
Vs
Z 2.0000000 2.0366381
Vs
_Z 1.5000000 1.4728366
s
g 2.0000000 2.2890725
Vs
_g 1.6000000 1.5406813

PADE-TYPE APPROXIMATION TO FOURIER SERIES
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Example 1.4.8. For a €R, let f, be the real-valued function

f.(¢)=sinh(ar)  (reR).

The Fourier series F, (t) of f into (-7, 7) is given by

eivt
2 2 2 :
+a St 72'(1/ +a )

(v#0)

Fa (t) _ 2Sinh((l7z') i (—21)V+1V Sin(vt) _ i (_l)vl VSil'lh(aﬂ')
v=1 V

Consider the C-linear functional 7', associated with f:

0,if v=0
.p LY vii_ @ _ )1\ 1
T, :P(C)—>C:x |—>Tfa(x )=c@ ={ (1 ’:Slng(“”),gfv:l,zﬁ,...
(v +a )

If

M= (” m.k )mZ0,0SkSm

is a complex infinite triangular matrix, then, for any m >0, a Padé-type approximant to f, (t) is

a function

—it

Ve ™)~V (x)]
(

e_”T_f;,(
Re(m/m-+1), (1) =2Re

As usually,

Vi (x)z 7ﬁ(x_ ”m,k)

k=0

is the generating polynomial of this approximation (y €C— {0} ).

@).lf m=3 and 7;, =7, =7, =7,; =0 , then
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Re(3/4), (r)=2smh(“”)( ! gint-—2 sin2+—> sinstj.
¢ T

1+a’ 4+a’ 9+a’
Hence,
a 1/2 2
l f1/2 () Re(3/4) fin (¥) S2(0) Re(3/ 4), (@)
0 0.0000000 0.0000000 0.000000 0.000000
_r
6 —-0.2648002 —-0.2954574 —1.249367 -19.476309
z
> 0.3193525 0.308832 1.614488 16.920309
T
4 0.4028703 0.3025888 2.3012989 9.3066229
z
3 0.5478534 0.2660742 3.9986913 —7.3807882
z
2 0.8686709 0.4436537 11.548739 —5.2446673
At first glance, the numerical results in the above table show an insufficiency status for
our choice (at least for the case a =2). However, for 7,,=..=7,, =0 and m enough
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large, the corresponding Padé-type approximation results reveal sufficiently efficient, because of
the coincidence of our approximation with the finite partial sum consisting in the first m terms of

the Fourier series F), (t)

2
(b).If m=3 and 7;, =75, =75, =0,7,; = 3 then

—it
eitTfa(V4(ee_it):I;4( j_ 41t([ a)]e |: (a)+ cl(a)} +[c§“)+§c§“)} j’

v, (e—it): e—4it(1 + %enj '

Thus,
2sinh(ar) 13 12 .
Rer(3/4). (1) = - sint
G4, @ 7r(l3+l2cost)ql+a2 4+a2}
6 26 18 .
+ == -+ 5 sin 2¢
1+a 4+a 9+a
27 12 )
+ - = — [sin3¢ |.
9+a” 4+a
It follows that
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a 1/2
! S (@) Re(3/4), () £ Re(3/4),, (1)
0 0.0000000 0.0000000 0.0000000 0.0000000
T
6 | —0.22648002 ~0.2773082 ~1.249367 ~2.0063189
r
5 0.3193525 0.3317165 1.614488 2.1108546
T 0.4127542
P 0.4028703 2.3012989 2.0641907
7
3 0.5478534 0.7364422 3.9986913 1.6883143
T
B 0.8686709 0.8430904 11.548739 3.4292061

1
All these results seem to be enough successful (at least for the case a = E). But, on the other

hand, some unexpected difficulties appear: if, for example, a = —3 then

Re(3/4), (%J =25.194418 while [, (%J - 52279719,

Re(3/4), (%J =2.0744719 while f, {ﬂ — 11.548739.

Obviously, the variation of the real parameter @ may cause spectacular perturbations in
the behavior accuracy of our approximation results and, therefore, we must seek for constructing

more satisfactory approximants in the generalized Padé-type sense ([48]).
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1.4.2. Accelerating the Convergence of Functional Sequences

We shall now see how Padé-type approximants to continuous 27 — periodic real-valued
functions may accelerate the convergence of functional sequences. More precisely, we shall study

the assumptions under which, for every sequence of functions converging to a real-valued
continuous 27 — periodic function on [— 7[,7[], there is always a Padé-type approximation
sequence converging point-wise to that function faster than the first sequence. This property, due

to the free choice of the interpolation points 7 permits us to construct better approximations

m,k >
to continuous functions.

Before entering into more details, let me mention some well known results. Denoting by
(C[— 7[,72'],(-,-)) the space C [— 7z,7r] of all continuous real-valued functions defined on the

interval [ — 7, 7 |, endowed with the usual scalar product

(g.h) = [ g(s)h(s)ds
and norm

lel, =Ke. g>|% (g.heCl-7,7]),
it is easily verified that (C[-7,7z],{--)) is a not complete prehilbertian space. If X, is the
(21 +1) - dimensional subspace of (C[- 7, 7z],(--)) consisting of all trigonometric real-valued
polynomials p, (¢) with degree 7, then the family
{0,(t) =1,0,(t) = cost,y, (t) =sint,p,(t) = cos(2t),w, (¢) = sin(27),...
@,(t)=cos(nt)y, (1) = sin(nt)}

is an orthonormal system in X and there exists always an element f,(t) of minimum distance

2n+1 >

from a fixed point u(l) € C[— 7z,7r] :
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plt) =D a0, (1) + Y By, (1)
v=0 v=l

with

av:<¢v’§> and ﬁv :<l//v’§>'
o, v,

2 | 2
The polynomial g,(t) is the orthogonal projection of g(¢) into X

, and is called the best

2n+

approximation of g(t) into X, ., . Observe that, since the system

2n+1

{goo 9¢1 9V/1 5900y ¢n ’Wn ,}
is fundamental in (C[— ﬂ,ﬂ],<.,-> ), the orthogonal projection operator F, of(C[— 7;)7;],<.,.>)

onto X, ., satisfies

hmnaoo|Fn(g)_g||2 =hmn%°°|| ﬁ"_g"Z :O.

However, there exists a function g(l‘) eC [— T, ﬂ]with unbounded orthogonal projection

sequence
Similarly, if we consider the space C [— T, 72'] endowed with the uniform norm
lgl, =sup. ..l
and the class R, ,,[ — 77, 77 ] of all rational functions
p.(0)/q, ()
(n is the degree of p, (t) and m is the degree of ¢, (t) >0), then for any function
g(l‘) eC [— 7[,71'] one can associate at least one best rational approximation 7, n(t) from the class

R, [ — 7,7 ]. In both cases, the approximations are global and with respect to some norm.

One might hope that if we seek to approximate point-wise a real-valued continuous

27 —periodic function, then the expected results will be presented earlier. In other words, one
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simply looks for other ways to recapture quickly a continuous 27 — periodic real-valued function
from a few known Fourier coefficients of this function. One such method is explored by means of

Padé-type approximation and requires some preparatory material.

At first, by using techniques similar to those proposed by Bromwich and Clark in [27]
and [33] (see also [18]), we prove the following

Proposition 1.4.9. Let A be the operator of differences. Let also
{xm tm= 0,1,2,...} and {ym m= 0,1,2,...}
be two sequences of real numbers satisfying

x,#y, and lim  _y =0.
Suppose {ym m= 0,1,2,...} is strictly monotone. If

lim, . [Ax, /Ay, ]=0,
then

lim, . x, =xeR and lim, [(x, —x)/y,]=0.

Proof. Let &>0. Without loss of generality, we can assume that the sequence
{ym m= 0,1,2,...} is strictly decreasing. (The case {ym m= 0,1,2,...}: strictly increasing is
similar.) Since

lim, ,, [Ax, /Av,]=0,
there isa M, > 0 such that

~¢<(Ax, /Ay, )< & forany m> M, .

Since Ay,, <0, these inequalities can be rewritten as

_g(ym_ym+1)<xm_xm+1<g(ym_ym+1) fora’nymZMO‘

Let us replace the index m by m+1,m+2,....m+ p—1 . We have
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_g(ym _ym+1)<xm _xm+1 <£(ym _ym+1)

- g(ym+l - ym+2 ) < xm+l - xm+2 < g(ym+1 - ym+2)

for any m = M, . Adding these inequalities, we get

—8( m —ym+p)< X, =X, < g( ” —ym+p) forany m> M, .
Of course, we can suppose y,, = ¥,,., <! and therefore obtain

-&<X,—X,,, <& forany m2M, .
It follows that {xm im= 0,1,2,...} is a Cauchy sequence. As the real field R is complete, this
sequence converges to a limit in R, say x. Letting now p — oo in the inequalities
—8( m —ym+p)< Xy =Xy, < 5( m —ymﬂ,) (m =M,),
we get
-y, <x,—x<g&y,, foranéym=2M, ,

which implies that

lim, . [(x, —x)/y,]

The Proofis now complete.

Recall also that for two numerical real sequences {xm :m=0,1,2,...} and

{ym m= 0,1,2,..,} converging to x and y respectively, we say that
{xm m= 0,1,2,...} converges faster than {ym im= 0,1,2,...},

if
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tim,, . [(x, = x)/(,, - »)]=0.

With this terminology, we can now quote a classical result which is a direct

consequence of Proposition 1.4.9.

Corollary 1.4.10. Let A be the operator of differences. Let also
{x, :m=012..} and {y, :m=012,.}

be two sequences of real numbers converging respectively to xeR and y eR. Suppose
{ L im= 0,1,2,...} is strictly monotone. If

then the sequence {xm m= 0,1,2,...} converges faster than the sequence {ym m= 0,1,2,...}.

In [25], C. Brezinski showed that if’
— 1 1
limua|Ax,, [n = R <r=1lim,_ [Ay,[",

then the sequence {Axm m= 0,1,2,...} converges faster than the sequence {Aym tm= 0,1,2,...}:

hmm—)w [Axm/Aym]: O

The main criterion of Corollary 1.4.10 can thus be rephrased as follows.

Corollary 1.4.11. Let A be the operator of differences. Let also

{x, :m=012..} and {y, :m=012,.}
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be two sequences of real numbers converging respectively to x€R and yeR. If

{ym m= 0,1,2,...} is strictly monotone and

it A, [0 = R< lim, _|Ay,[n =7,

then the sequence {xm m= 0,1,2,...} converges faster than the sequence {ym m= 0,1,2,...}.

The following three results give us now some theoretical answers to the convergence

acceleration problem by means of Padé-type approximants.

Theorem 1.4.12. Suppose there is a constant K >0 and an open neighborhood U of the unit

circle into which the generating polynomials V, ,, (x) of a Padé-type approximation satisfy
K< |Vm+1 (z)| ,Jorany z € U and any m sufficiently large.
(eis ): m= 0,1,2,...} is orthonormal in L* [— T, 7[] If

Further, assume that the family {V

m+1

1—xe"

—it —it %n
El’lm*00 {Supxsl | Vm+l (x)Vm+2 (e )_ Vm+1 (e )Vm+2 (X)G = R(t) (t € [_ 7, 72']):

then, for any real-valued continuous 27 — periodic function f on [—m, 7], the corresponding

sequence

Re(m/m+1),(t):m=0,1,2,...f
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of Padé-type approximants to f converges to [ (t) faster than any strictly monotone converging

sequence {ym m= 0,1,2,...} satisfying

1imm%|Aym|i > R(t).

Proof. By Theorem 1.3.21.(b), the sequence {Re(m/m+l)f(t):m=0,1,2,...} converges to

f (t) everywhere in [ — 7,7 |. Letting ¢ € [— T, 7[] be fixed, we have

ARetm/m+1), @) 2|7, (G, (r.e")-G, (x|

The continuity of the linear functional 7', implies now that

” it —it
‘A(Re(m Im+1), (t)liz < (%J " |:Supxgl | Vs (x)Vm+2 (e_l )— V:HZ (e )Vm+1 (x)% ’

1—xe

where the constant 3, depends only on f . By passing in the upper limit, we obtain

1

limo e [A(Re(m /m +1) , (0)| < R(1).

Application of Corollary 1.4.11 for the sequences {xm = Re(m/m+1)f (t): m= 0,1,2,...} and

{ym m= 0,1,2,...} proves the Theorem.

Similarly, using Corollary 1.3.22 instead of Theorem 1.3.21, we are leaded to
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Corollary 1.4.13. Let

V.. (x) = yﬁ (x - 7Z'm,k)= miib,ﬁ'")xk (m=0,12,..)

k=0 k=0

be the generating polynomials of a Padé-type approximation such that

m+1 > 1 m+l1 -
> b,ﬁ’")‘ =— (m20), >b"b" =0 (m<n)
k=0 2z k=0
and
1
m
. m+2 m+l
limass| 30 D[R] = R.
k=0 v=0
(v#k)

If there are two constants o < and ¢ <1 fulfilling

mzﬂ‘b,ﬁ’")‘<0' (m=>0) and ‘ﬁm,k‘<c (m>0,0<k<m),
k=0

then, for any real-valued continuous 27 — periodic function f on [— 7Z',7Z'] , the corresponding

sequence

Re(m/m+1),(t):m=012,..f

of Padé-type approximants to [ converges to f (t) everywhere in [ — 7,7 ], faster than any

strictly monotone converging sequence {ym im= 0,1,2,...} satisfying

lim,,,|Ay,|" > R.

HELLENIC ARMS CONTROL CENTER PUBLISHING
182 published on line as an e-book in 2007
www.armscontrol.info




N.J.DARAS PADE-TYPE APPROXIMATION TO FOURIER SERIES

For a Proof of this Corollary, we only note that

m+2 m+l
—it —it (m+1) 1. (m)|| itk k lt
‘Vm+1 (X)Vm+2 (e )_VWH-I( l )Vm+2 j Z z b " b " ‘ V ' ‘
k=0 v=0
(v#k)
Hence
1
i Vs @)=V (s fe™ |~
llmmaoo sup‘x‘q m+1( ) m+2 i;n+2 m+1
- 1—-xe ‘
1
m+l m
<Timp | Y Z\b“"“)b(m)\
k=0 v=0

(v=k)

and we may apply Theorem 1.4.12.

Theorem 1.4.14. Assume that the generating polynomials V, (x) of a Padé-type approximation

satisfy
Vm+l (x) — 0

lim
m—»o ( -1 )
Vm+1 z

compactly in an open set @ < C* containing (B X D)U (Cx {0}).If

BN

|Vm+1 (x)Vm+2 (e_it )_ Vl;’l+2 (x)V’”+1 (e_it )|} = R(t) (t S [_ 7, 7[])3

limm—>oo {Supxsl 1 xe.

then for any real-valued function f, continuous and 271 — periodic on [— 7r,7r], the

corresponding sequence

{Re(m /m+ l)f (t):m= 0,1,2,...}
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of Padé-type approximants to [ converges to f (t) faster than any strictly monotone converging

sequence {ym m= 0,1,2,...} such that

1imm%|Aym|i > R(?).

The Proof of Theorem 1.4.14 is exactly similar to that of Theorem 1.4.12 except for the
fact that here we must apply Theorem 1.3.23.(b) instead of Theorem 1.3.21.(b).

1.4.3. Approximate Computation of Derivatives and Integrals

Suppose fis real continuous in the interval — 7 <¢ < 7, where f(-7) = f(7), and [ is

piecewise continuous on the interval — 7 <t < 7.

Then the Fourier series in the representation

F(t)= icvei"’

v=—00

is differentiable at each point ¢ € (— T, 7r) at which f "(t) exists:

F'(t) = icvivem [27)).

Defining the C-linear functionals
T,:P(C)—>Cand T,:P(C)>C
by
Tf(xv)= ¢, and Tf,(xv)= ive, (v=0),

respectively, it is easily seen that for any p(x) € P(C) there holds
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T, (p(x)) =T, (ixp'(x)).
Thus, if the complex infinite triangular matrix

M= (ﬂ'm,k )mZ0,0Sksm

is given, then for any m > 0, a Padé-type approximant to f '(t) is the function

: it —it | _
Re(m/m+1),.(t) =2Re e —T, X{Vm+1(e ) Vi (x)

N\

|
=
.

m+l

or

Re(m/m +1) (1) = —2Re[V e’ T{XV@ (")j

e —x

s ie" T, {xeﬂ V.. (e”i’)— Vo (X)J _

—it
V..\e

m

As in the Proofs of Theorem 1.3.9.(b) and Proposition 1.3.10.(b), one can show that the

error of this approximation is given by the following formula:

Re(m/m+1),.(t)— (1) = %anI Re[i j - S6) Vi (e ) )ds} :

- T
”ezt_est (7‘ e

et
where the limit is uniform on [~ 77, 7] . From Cauchy’s Integral Formula, it follows that
Re(m/m+1),.(t)- f'(t)=0,
and therefore
Re(m/m+1),.(t)=0,
whenever f/(¢) is a constant function in [~ 7, 7] .

Integration of Fourier series is also possible under much more general conditions than

those of differentiation: Let f be a real function that is piecewise continuous on the interval
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— 7 <t<r, regardless of whether series F (t) converges, the following equation is valid

whenever —7 <t, <t<7:

o0 0

t
If(s)ds =c, (t —t0)+ Z C—V e’V — Z ?—Vem(’ ([27D).
o o

Observe that
V4 V4 0
J-f(s)ds =2rc,, J-f(s)ds =rc, and J-f(s)ds =7c,.
- 0 -

Define the C-linear functional T [ :P(C) > C by

v

()= ?—V?ifvzl.
0,if v=0

t
Then, for any m > 0, the definite integral I f(s)ds can be approximated in the Padé-type sense

ty

by the number

Re(m/m+1)[ff]::Co(f—to)+2Re{ ¢ 7 (Vmﬂ(e_”)—VmH(X)J

V.. (e‘” ) s o

e —x
B e’ T V.. (e_i") )— V.. (x)
v (e_”" ) [r e —x '

m+1

Notice that

Re(m/m + 1)( j fj = T f(s)ds and Re(m/m+ 1)( jo f] = i F(s)ds.

The error is

t t 1 1 Vm+1 (.X)
Re(m/m + 1)( [ 0 fj - j f(s)ds =Tlim,_, 2 Re[ e )TIf(mit . 1]

_ 1 T ( Vm+1 (x)j
Vm+l(r_le_”°) [\ xre™ -1)|"
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Chapter 2

Interpolation = Methods for the
Evaluation of a 2z-Periodic Finite
Baire Measure and Integral
Representations for Padé -Type

Operators

Summary

In this Chapter, we will discuss the definition and effectiveness of Padé-type approximants to 2z-periodic
finite Baire measures on [-z,z], as well as the convergence of a sequence of such approximants in the weak-star
topology of measures. The next purpose of the Chapter is to look at an explicit form of Padé-type operators. To do so,
we will consider representations of Padé-type approximants to harmonic, analytic, and L’-functions by means of
integral formulas, and then, we will define corresponding Padé-type operators. We will also study the basic properties
of these integral operators and will prove convergence results.

Introduction

One of the most effective methods for the numerical solution of integral equations imposes
replacement of the integral equation by an system of linear equations, using aquadrature formula.

Indeed, suppose we are given the equation

(B1)  f(s) =4[ h(s.0) (0t = g(s).

If we replace the integral, using a numerical interpolation formula of the form
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[rade=3 4,1(),
g k=1
based on the points ¢,,7,,...,¢,, and require (El) to be satisfied only at these points, then we

obtain a system

f(tj)_ﬂ’gAkh(tj’tk )f(tk (e, )= g(tj) (j=12,..n).

Any solution of this system determines an approximate value for the required solution at the
points #,,f,,...,%, .
It often happens that the integral in (E 1) is considered with respect to some finite

measure ( on [— 7Z',7Z'] .

(B2)  f(s)=A[h(s.0) f()du(t) =g(s) .
Below, we shall be concerned with constructi;;; a general approximation method for a large class
of measures 4 on [— T, 7[], in such a way that one can approximate to an integral equation (E 2)
by replacing it by an equation of type (E 1) .

Let us begin with a finite real Baire measure £ on [— T, 72'] For definiteness, we assume
that  is 2z —periodic, i.e. if ¢z has a point mass at — 7z or 7, these masses must be the same :
,u({— 72'}) = ,u({ir}) Then,  can be regarded as a measure on the unit circle C, obtained by
identifying — 7 and =, and the Poisson integral u(re” ): u(z) of u is areal-valued harmonic
function in z . From the solution of Dirichlet’s problem in the unit disk D, it follows that,
when r — 1, the measures

du, (1) = u,(t)dt (u,(t) = u(re” ))

converge to du(t) in the weak-star topology on measures.
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By using interpolation methods, we shall seek for an effective approximation to u, (t)
A natural approach to its solution is afforded by the ideas of Padé-type approximation. According

to [42], the Padé-type approximants Re(m/ m+ l)u (z) to the harmonic function u(z) can be
chosen in such a way to be harmonic real-valued function everywhere on D ; their fundamental
property is that the Fourier series expansion of the restriction Re(m/m+1), (t) of

Re(m/m+1), (re”) to the circle C, of radius 7 <1 matches the Fourier series expansion of the

restriction u, (t) of u(re”) to C, up to the * m™ Fourier term. We can therefore approximate

du, (1) by Re(m/m+1)u(re” )dt- When » — 1, the measures Re(m/m+1), (I”eit )dt
converge to the finite real measure

Re(m/m+1),(t)dt =Re(m/m+1), (" )dt

in the weak-star topology on measures. The boundedness in L' —norm of the family

{Re(m/ m+1), (re”): 0<r< 1} guarantees that the Fourier series expansion of the limit
measure  Re(m/m+1), matches the Fourier series expansion of 4 up to the * m™ — order’s
Fourier-Stieltjes term. The measure Re(m/m +1) ,(¢)dt will be called a Padé-type approximant

to du(t) . The integral equation
f(s)—4 Th(s,l)f(t) Re(m/m+1) ,(t)dt = g(s)

is a Padeé-type approximate equation to (E 2) .

To judge the effectiveness of this method, and the extent to which it can be justified, the
method need to be investigated theoretically. So, in the first Section of this Chapter, we discuss
the definition and effectiveness of a Padé-type approximation to a finite Baire measure.

The second Section deals with the representation form of Padé-type approximants by

means of integral formulas and the consideration of corresponding Padé-type operators.
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Let f be a function analytic in the open unit disk D, with Taylor power series

expansion
Zavz"
v=0
Let also 7, be the linear functional defined on the space of complex polynomials

by T, (x")z a, . By Cauchy'’s Integral Formula and Hahn-Banach Theorem, the functional 7',

can be extended to the space A(B) of all functions which are analytic in D and continuous in the

open neighborhood of D ([40]). In particular, we have
f(z)= Tf((l—xz)’l) forany z e D.
Now, let V, (x) be an arbitrary polynomial of degree m+1, with distinct zeros

Ty Ty e T of respective multiplicities (m1 + l), (m2 + 1),...,(mn + 1). If

n

(m1 + l)+---+ (mn + 1) =m+1, denote by [ (V ) the linear operator mapping each

m+1

h (x) € A(E ) to its Hermite interpolation polynomial G, ,, of degree at most m defined by

h) (ﬂ.): GY

U (z,) for i=12,.,n and j=0,l,.,m.

If h(x,z)=(1-xz)", then T,(G,, (x,z)) is the so-called Padé-type approximant to

f(z) with generating polynomial ¥, (x). It is a rational function with numerator of

degree m and denominator of degree m+1, denoted by (m/m +1),(z) and such that
f(z)=(m/m+1) (z)=0(z""), if |2 < min{ (/| |}....(1|=,[)} (r20D).

Making use of the duality notation, we can also write

(nfm +1), ()T, (G (5,2 = (7, 10 W =) ) = (1, N, =)

Note that if V

m+1

7[’1

(x) is identical to the orthogonal polynomial ¢,,, (x) with respect to

T,, thatis T, (x'/qm+1 (x))z 0 whenever v =0,1,2,...,m, then the Padé-type approximant
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(m/m+l)f(z) becomes the classical Padé approximant [m/m+1]f(z) to f(z) , in the

sense that

1(2)=[m/m+1] ,(z)=0(z>"), if |2| < min {1/}, ... (1=, )} 21D

In [26], Brezinski showed that the operator which maps f to (m/ m+1) , can be

7[}'[

understood as the mapping of A4 *(5 ) into itself which maps 7', into [] *(Vm " )IT f) . This

mapping, which depends on the generating polynomial V,,, (x), is called the Padé-type operator

for the space D) of all analytic functions on D and it is exactly the operator [ *(Vm +1)- If

Vo (x) does not depend on 7', then [ *(Vm +1) is linear. But for Padé approximants, since
V. (x) is the orthogonal polynomial ¢, ., (x) of degree m+1 with respect to the functional
T, then V (x) depends on T, and the linearity property only holds if the first 2m+2

moments of both functionals are the same since, then, both orthogonal polynomials of degree
m+1 will be the same. The aim of the second Section is to look at an explicit form of the Padé-

type operator by means of integral representations. The first Paragraph of this Section deals with
integral representations of Padé-type approximants to real-valued L* or harmonic functions and,

thus, with expressions of Padé-type operators for the spaces Lé (C)(of all real-valued L

functions on C), Li’( )[— T, 71'] (of all real-valued 2z-periodic L* functions on [— T, 7[]),

27— per.
and H, (D) (of all real-valued harmonic functions on D). In Paragraph 2.2.2, we define and
give the explicit form of the composed Padé-type operators for the spaces LZC (C ) of all complex-
valued L’ functions on C, Lé,(2n—per.) [— T, 71'] of all complex-valued 27 —periodic L’

functions on [— 7[,7[], and H, (D) of all complex-valued harmonic functions on D. Since

oD)c H (D), we thus obtain the desired explicit form of (Vm " )
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2.1. Interpolation Methods for the Evaluation of a
Measure

2.1.1. Padé-type Approximation to Finite Baire Measures
In this Paragraph, we shall introduce Padé-type approximation to measures on [—7,7].

Let u be any finite real Baire measure on [—7,7]. Since [—7, 7] is a closed subset of
Euclidean space, the Baire and Borel subsets of [—7x,7] coincide, so g may also be identified

with a real Baire measure.

We can define the Fourier-Stieltjes coefficients of 1 by

14

S je"vgdy(e) (v=02x1,42,.)
2 <

and the associated Fourier series. We might expect a sequence of measures to converge to & in
the weak-star topology on measures, but the measure g must have period 27 . This means that if
M has a point mass at — 7 and 7, these masses must be the same, i.e.

ul-7f)= p((z)).
A better way to formulate this condition is that 4 is really a measure on the circle obtained by
identifying — 7 and x.If

u(re"): ur(z‘) = % ]{R(l‘ — H)d,u(é’) = i (% ]{e—iVHdlu(H)Jrveivt

y=—0 -

]
_ V| ivt
= Eo;r e
y=—0

(0<r<lL—-m <t<r) is the Poisson integral of the measure x, then the function u(z) is

harmonic real-valued at z in the disk and the measures du, () = u, (t)dt converge to du(t) in

the weak-star topology on measures, i.e.
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lim, ,, [ /() dp, (1) = [ f()du()

for any real-valued continuous function fon [—7,7].
In order to define Padé-type approximation to 4, we consider again the infinite

triangular interpolation matrix
M = (”mak)mZ0,0SkSm

with complex entries 7, , satisfying |7rmk| <1 (m=0,0<k<m). For any m and any fixed
zeC- {72',2,{ k= O,l,...,m}, let us consider the unique polynomial G, (x,z) of degree at
most m which interpolates the function (1—xz)™" at

X=7 T T

m,0°"m,1°2° "2 m,m *

Let us define the corresponding Padé-type approximant to u(z)= u(re”) with generating

polynomial
V)= [T 7,.)
k=0
by
Re(m/m + l)u(re”)z 2Re M -0, = 2RCT#(Gm(X,’”eit))_O'0 :
Vo (r e”)

As usually, we have used the notation

V.. (};1 e—it)

~ ' 1 i(m+1 1 i
a , Vol (}"e”)IZ Fmt el(m+ ) Vol (l" et )
r e —X

W (r.e” ):= r" ei'”tTﬂ

T P is the linear functional
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T, PO-C:x T, )=0, (v=012,.).
Then
Re(m/m+1),(z)=Re(m/m+1), (r e”)

is a harmonic real-valued function in the open unit disk. Further, if the Fourier series

representation of Re(m /m+ l)u (r e”) is

Re(m/m+1), (re”) = idim)r‘v‘em,

V=—00

the choice |7rmk| <1 forany k < m implies that
dv(’”) =0, forany v=0,x1,12,. . tm.
Clearly, when » — 1, the measures Re(m/ m+ l)u (r e" )d t converge to the finite real measure

on [-7,7] :

Re(m/m+1),(¢)dt =Re(m/m+1), (r e )dt
_ {m(m )/ V(" )j - ao}dt _ pReT, (G, (r.e" ) o, .

in the weak-star topology on measures, and, moreover, the boundedness in L' —norm of the

family {Re(m/ m+1)u (r e”) :0<r< l} guarantees that the Fourier series expansion of the

limit measure Re(m /m+ 1) . 1s given by
id(m)eivt
V=—0

Definition 2.1.1. The finite real Baire measure on [—m, 7]

Re(m/m+1)ﬂdt

is called Padé-type approximant to u , with generating polynomial V.

m+1(x)'
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According to our discussion above, if only a few Fourier-Stieltjes coefficients of a finite

real Baire measure £ are known, one can approximate 4 by its Padé-type approximants, in the

sense that if |7zm’k| <1 forany k < m, then

d" =c
whenever —m < v < m.
Let us study the error formula.
Theorem 2.1.2. For any m > 0, it holds
. 1 Vs
Re(m/m+1),(¢)dt - du(t) = lim{ 2Re -7, ,‘t(") dt
r—1 o ! -1
Vi (e ™) xre

o 1: 1 v
= hmr—)l{z Re(girei(z-s) 1y (lr_le_i,)d,u(s)J dt}

m+l1
in the weak-star topology on measures.

Proof. Let {O <r<lin= 0,1,2,...} be such that

lim,, r =1.

As it is mentioned above

lim, , duy, =du
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and
lim, , Re(m/m+1), (rnei’ )dt =Re(m/m+1),(t)dt,

in the weak-star topology on measures. It follows that

Re(m/m+1),(¢)dt — du(t) = li_{l;lo{[Re(m/m +1), (rn e")— u, (t)]dt}

or

Re(m/m+1),(t)dt —du(t) = lim, | 2Re L | Ve

M it
o1 xre' —1
Vo (re™

dt;,

in the weak-star topology on measures. To complete the Proof, write

m
-Sx
k=0

and observe that

0 . m B(m) V4 )
Tﬂ(xm+l(x)j eretvtzzk_ﬂje—t(wk)sdﬂ(s)

v=0 k=0 -z

27[ ”{Zl"v iv(t— S)ZB(m) tks}dlu(s)

7 =0

1 4 V —is
= re'fftl_—(se)_zdﬂ(s),

which ends of Proof.
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Remark 2.1.3. It is of course possible to construct Padé-type approximants to the finite real Baire

measure (£ on [—r, 7] with various degrees in the numerator and denominator. To do so, let us
consider the Fourier-Stieltjes coefficients o, of x4 (v =0,£1,£2,...). The Poisson integral of

M is then defined by

u(re”): iavr‘v‘eiV’ (O0<r<l,—-z<t<n).

V=-—0

If, forany n >0, T p denotes the linear functional

T, :PO-Cx' T, (¥)=0

M, n+v?

then, as 7 — 1, the finite real Baire measure

Re(m/m+1), (re” )dt = {2 Rerz_i or'e" +r'e"'T, (Gm (x,re”))} - 0'0} dt

v=0

has a radial limit

n—1
Re(m/m+1),(t)dt = {2 Re{z o’ +e"'T, (G(x, re”))} -~ 0'0} dt

v=0

in the weak-star topology on measures. This limit is also called a Padé-type approximant to u .

The crucial property is the following one: if |7rm, k| <1, for any k < m , the Fourier representation

of

Re(m +n/m+1),(¢)dt

matches the Fourier series of x4 up to the & (m + n)th —order’s Fourier-Stieltjes term.
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Remark 2.1.4. If, instead of a finite real Baire measure, we have to approximate a finite complex

Baire measure 4 on. [—7, 7], with period 277 (: z2({~ ﬂ}) = u({z }) ), of the form
dp(t) = dp(t)+idu®(¢),

where 1" and x* are finite real Baire measures, with Fourier-Stieltjes coefficients
o and 6@ (v =0,£1,42,..)

respectively, then for any n, ,n, > 0, the finite complex Baire measures:

{2R6|:ZO'(1) iy i tTﬂm (Qm(x,eit)):|

n,—l1

+12Re{z @) yive einthﬂ;D(Q (x, en))} ( 1)+ZG(2))}dt,

v=0

v=0

n; =1
{2 Re[Za‘fl)ei"’ + ™ ’T#m (Rm (x,e" ))}

ny—1

+l2RC{ZO'(2) Wt'i‘emer (z> (R (x elt))i| ( 1)+l0-(2))}dt’

v=0

v=0

ny -1
{2 Re[z oe +e™ ’Tﬂm (Qm (x,e" ))}

ny—1

+i2Re[20‘§2)ei"‘ +ei”2’TﬂLz) (Rm(x,ei’))} ( () +10(§2))}dt,

v=0
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and

v=0

n; -1
{2 Re[z ole! +e™ ’Tﬂm (Rm (x,e" ))}

ny,—1

2
Yot 1T, (0, (x e”))} ~(of +io? )i
na

v=0

+i2Re[

are called composed Padé-type approximants to u . Here,
0, (x,z) and R (x,z)
denote the interpolation polynomials of (l - xz)f1 at (distinct or not) points
705 mroees T €Cand p, 0,0, 15 0, €C,
respectively. In other words, any finite complex Baire measure of the form:
(m/m+ l)ﬂdt = Re(m/m+ 1)#0) dt +iRe(m/m+ l)ﬂm dt

is said to be a composed Padé-type approximant to

= +in®.

The error of such an approximation is

z W [ —is
(m/m+1),dt —du(2) =l{Re“ Vm“(i ) ds J
72' —

Sl et
. 7 V”(li) e—is d.
+1 Re{ I e (lr(_le—i)t ) rei(t—f) _ 1}} >

-’ m+l
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where the limit is considered in the weak-star topology of measures. It is obvious that the

computation of composed Padé-type approximants

(m/m+1),dt

to du (t) requires the knowledge of Fourier-Stieltjes coefficients of

M 2)

dy*’ and du

up to the = m™ — order coefficient.

2.1.2. On the Convergence of a Sequence of Padé-Type
Approximants

Given a finite positive Baire measure 4 on [—m, 7], we shall now study the

assumptions under which a sequence
{Re(m/m+1),(dt: m=012,..|

converges to dz(t) in the weak-star topology on measures, that is

lim, j f() Re(m/m+1),(1) di = j ) du()

for any real-valued continuous function f° (t) on [—7,7x].

Our first result will follow from a combination of Radon-Nikodym Theorem with

the error formula given in Theorem 2.1.2. Recall that a positive Baire measure 1/, on
[—7, 7] is absolutely continuous with respect to another positive Baire measure (i, on

[, 7], if every subset of [—7,7] of measure zero for 4, is a set of measure zero for
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M, . The Radon-Nikodym Theorem states that y1, is absolutely continuous with respect to

M , if'and only if there exists a non-negative function F' in r (d ,uz) satisfying
du=Fdu,.

We dispose the following partial answer to our problem.

Theorem 2.1.5. Let u be a finite positive Baire measure on [—m, 7| which is absolutely

continuous with respect to the Lebesgue measure, and satisfies

Suppose there is a constant K >0 and an open neighborhood U of the unit circle into

which the generating polynomials Vm+1(x) satisfy

K < | Vm+1 (x)

,forany x € U and any m enough large.
If the family

{V (eis)i m= 0,1,2,...}

m+1
is an orthonormal bounded system in I? [— 7[,7[] , then

lim Re(m/m+1),(t)dt = du(t),

m-—>0
in the weak-star topology on measures.

Proof. Let € >0 and let {rn <l:n= 0,1,2,...} be a strictly increasing sequence of positive

numbers such that
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lim, .7, =1 and re" €U forany n>0and — 7 <t<7.

m—>0 "n

According to the Radon-Nikodym Theorem, there is a non-negative function F e L [— 7[,7[]

with
du(s)=F(s)ds .
From Mercer’s Theorem, it then follows that there exists a M = M (&) such that the

inequalities m > M ,n>0 and — 7 <t < 7 imply

1 T OF(s)
Vm+1(rileiit) -[rrnei(tS) -1 Vm+1

n

(e"is) ds| < ¢ .

T v, (e™)
2_[rrnei(ts) ] Vmﬂ(]l”; e—it)dlu(s)

By Theorem 2.1.2, we therefore obtain

lim Re(m/m +1),(t)dt = du(t),

m—»>o0

in the weak-star topology on measures, which completes the Proof.

Corollary 2.1.6. Let
m+1 m
V()= B"x* = [ [(x-7,,) (m=0,1.2,.)
=0 =0
be the generating polynomials of a Padé-type approximation such that
mz-i—l

k=0

2
1 m+1 -
B"| = S (m20) ad Y BUE=0 (m<n).
k=0

Suppose there are two constants & < © and ¢ > 1 fulfilling
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m+l

2.

k=0

B,Em)‘<o' (m=>0) and ‘ﬂ'm’k‘<c (m=0,0<k<m).

If 1 is any finite positive Baire measure on [—m, ], that is absolutely continuous with

respect to the Lebesgue measure and satisfies ,u({— 7[}) = ,u({ir}) then there holds
lim Re(m/m +1),(t)dt = du(t),

in the weak-star topology on measures.
Proof: If the generating polynomial
Vm+1(x) = VH(X - ﬂ-m,k)
k=0
is written as

m+1

Vm+1(x) = ZB]Em)xk )
k=0
then the orthogonality assumption for the family
Woale"): m=012..}

in the above Theorem, is completely described by the following two conditions

m+1 m+1

2
Y|B"| = i (m>0) and > B"™B" =0 (m<n).
k=0 k=0

In fact, for any m > 0 , we have

m+1 2 m+1 R ) ) 7 m+1 ) m+1 )
ZﬂZ‘BIEm)‘ — ZBIEm)B‘Em) J‘ezksefzvsds — I ZBIEm)ezks Zezvs ds =1
k=0 k,v=0 —r v=0

S A\k=0

and
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m+1 n

2”2318”)315”) _ iBém)@]r'eikse—ivsds _ T(%Bém)eiksj(gBv(n)ei”]ds -0.
k=0 0 gt V=0

v= _z\k=0

Further, the boundedness assumption for the family

Vo (e):m=012.])

m+1
is guaranteed by the fact that there is a positive constant o < oo satisfying

m+l1

Z‘B,ﬁm)‘z <o (m=0).
k=0

Finally, by the definition of the generating polynomials
Vm+1(x): yH(x_ﬂ-m,k) (7/ EC_{O})’
k=0

it is easily seen that the existence of a constant ¢ > 1 satisfying
‘ﬂ'm’k‘ <c forany m and k

carries along the existence of an open neighborhood U of the unit circle C into which

there holds

0<K<inf _|V,,(z)], (m=012,..)

for some positive constant K which is independent of m .
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Theorem 2.1.5 can be viewed as an analogous to Theorem 1.3.17. A natural
question which now arises is whether Theorem 1.3.23 can be extended to the case of a finite

Baire measure on [—7,7]. This question has an affirmative answer, as we shall now see.

Theorem 2.1.7. Suppose the polynomials

V)= [T 7,.,)
k=0
fulfil
lim Vnal®) _ g
Vm+1(Z_l)

compactly in an open subset @ of C* containing (Cx{0})U (BXD). Let p be any finite

real Baire measure on [—7, 7], with period 27 . If
Re(m/m+1),(t)dt:m=012,..|
is the Padé-type approximation sequence to Ll , with generating sequence

V. . (x): m=012,..},

then

lim Re(m/m+1),(t)dt = du(t),

m-—>0

in the weak-star topology on measures.
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Proof. Let f be a real-valued continuous function defined on [—7,7]. Since the Poisson

integral u(z) = u(re”) of u is harmonic in the disk, Theorem 1.2.12 can be applied to get

lim Re(m/m +1),(z) = u(z),

m—>o0

compactly in

g(a))I{zeD:(é’,z)ea),ﬂSl}.

Since Dx D < @, we have g(w) = D . This means that

lim, [f(t)Re(m/m +1), (r e”)] = f(t)u,(¢) (ur (t)= u(r e”)),

uniformly on [—x, 7], for any fixed » <1. From Lebesgue’s Dominated Convergence

Theorem and from the fact that the measures
d, (1) = u, (1) dt
converge to du(t) in the weak-star topology on measures, it follows that

lim, , lim j f(ORe(m/m+1),(re" )dt =1lim, , f f(Ou,(¢) dt

- -

=tim [* f(e) du, (tydt = () du o).
Now, recall that the sequence

Re(m/m+1),(t)dt:m=012,..|

with generating polynomials {V (x): m= 0,1,2,...} converges to d g (t) in the weak-star

m+1

topology on measures if and only if
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lim_ j f(O)Re(m/m+1),(r)dt = j FO)du(),

or equivalently if and only if

lim  lim,_, j F(ORe(m/m+1),(re" )dt

=lim_, j F(Ou (H)dt =lim, j FOdu),
for any f . Thus, to prove the Theorem, it is enough to show that

lim,, lim, ,, [ f()Re(m/m+1), (e """ )dr

=lim

r—1

lim T F(ORe(m/m+1),(re' ),

forany @ €[-x,x].

Denote by
idﬁ’”)r‘”‘e”(”‘”
V=
the Fourier representation of
Re(m/m+1),(r.e” ).

Since Re(m/ m+1)u(z) is harmonic in z, it is twice continuously differentiable and

therefore, the sequence of partial sums
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{Zn:dim)rve”(”g) n= 0,1,2,...}

Vv=—n

converges uniformly on [—, 7] to

Re(m/m +1),(r.e"?),

because two integrations by parts show that d () (1 = O(v_z). It follows that it suffices to

v

prove that

lim,_,, lim,_, Zdy"{ [rae dtJ rler?

=lim, , lim,, ,, Zdv(’”)(jf(t)emdt] e
forall & €[—x,7]. But
1 7 vt
— | f() eMdt
2 170
is the Fourier coefficient TE{) of f . Thus, it suffices to show that

lim, ,, lim,_, > d" ¢ A =lim_ lim >d" ) rlev?
V=—00 v=—0
forany 6 € [-x,x].

Notice that the sequence

d™ 1)y 021,42,
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is the sequence of Fourier coefficients of a continuous function in I [— 7[,7[] . In fact, by
zj

<], <.

Cauchy-Schwarz’s Inequality, we have

o0

2 - 2
(m) (f) (m) (f)
Zdv T S(Zdv ij S[

V=—0 V=—00

>

Vv=—00

2 o0
(m) N
d\"| j ( > |
V=—00
From Bessel’s Inequalities

s

V=—0

d™

zj < HRe(m/m +1),(e") , < and i ‘TE{,)

it follows that
3 [d ) <.

Application of the Riesz-Fisher Theorem guarantees now that the sequence

fdm ")y =0x142,..

is, in fact, the sequence of Fourier coefficients of a continuous L* — function. Let H .(0) be

this function, with Fourier coefficients

pim = g ) (v =0x1,£2,...).

Extend /4, (8) into the unit disk by defining its Poisson integral
Hm(rei9)= va('”)r‘v‘e”a O0<r<l).
With this notation, to prove the Theorem it is enough to show that

lim, , H, (re“g) ,

r—1 m—w

lim, H (6)=lim
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where the limits lim,, ,  are considered with respect to the L” —norm in [—7,7]. In other

o0

words, it is sufficient to show that there exists a function H *(9) € C[-m, 7] with the

following two properties:

(P1) lim,_, lim
(P2) lim

,HOOHHm<re"‘9)— H* (9)“ =0,
m—>°°||Hm (0)_ H* (Hm =0
To do so, we may make use of three observations:

(i). First, it is known that, for each fixed m , the functions H (r ei‘g) converge to [, (0) in
L” —norm, i.e.

lim, |, (re”)- 11,,(6)] .= 0.

r—1
(ii). Next, for each fixed » <1, the sequence { /{,, (r eig) : m=0,1,2,...} converges to some
H*(0)e[-n,7x],ie.

lim,,_,, |&,(re”)-H*(0) =0.

(To see this, one may use Cauchy-Schwarz’ Inequality to obtain

‘Hm (rei‘g)— H, (rem} < [ i ‘dlf'") M- da” I
Then, by Bessel’s Inequality, there is a positive constant ¢, such that
HHm (re“g )— H, (re“g l‘ W< cfH Re(m /m+ l)u (reig)— Re(n /n+ l)u (re“g )H )
< (27r)cfH Re(m/m+1), (reig)— Re(n/n+1), (re“g l‘ "
Since u is harmonic in the disk, an application of Theorem 1.2.12 shows that the sequence

{H ” (r ei‘g): m= 0,1,2,...} is a Cauchy sequence into the complete space C [— 7[,7[] , which

proves our assertion.)
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(iii). Finally, if H * (r e g) is the Poisson integral of the continuous function H * (@), then

lim,_,[[# *(re” )~ 1 *(0)] .= 0.

r—1

After these remarks, one can really end the Proof of the Theorem. From (ii), it

follows directly the asymptotic formula

lim, ,, lim,,_, |, (re"” )~ 2 *(6)] .= 0.

On the other hand, since, by (i) and (iii), for any & > 0 thereisa r = r(a) <1 with

o0

HHm (0)— H, (re’ﬂl‘ < % and HH * (rei‘g)— H* (0)” < g

for every r = r, we obtain

|7 *(0)~H,,(0).

0

= “H*(e)—H*<V€i9)Hw+ “ H,,,(H)—Hm(rem)“ w+HH*(rei9)_Hm(rei9)“

< 2?EHH*Q@W)—H,"(lfce"”)u -

Obviously, one can find an integer M = M (rj >0 such that for every m > M

”H * (re’p)— Hm(reig)“ o< 2

We thus conclude that

lim| H,,(0)- H*(0)| .= 0,

m—>0

Hence the function H *(0) e C [— 7r,72'] has the properties (Pl) and (P2). This completes
the Proof.
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As we have seen in Theorems 1.3.23 and 2.1.7, the crucial hypothesis for the
convergence of a Padé-type approximation sequence to a continuous function or to a finite

Baire measure concerns the choice of the generating polynomials
m
Vm+l(x) = ]/H(x_ ﬂ-m,k)
k=0

or equivalently the choice of the interpolation points 7, , . In both cases, remind that the

sufficient condition was the compact convergence of the sequence

{ e : m:012.}

V Hiz_l ,

into an open subset of C* containing (Cx{0})U (BXD). Our next purpose is to give a

stronger sufficient convergence condition in terms of the entries 7, , only.

Corollary 2.1.8. Suppose the interpolation points 7, , (m20,0<k <m) are chosen so

that

-1<rx,, <l and lim,_ Zl Zn:(ﬂm,k)z =—00..
n21 M k=0
(a). For any real-valued continuous 27 — periodic function [ defined on [—r, 7], there
holds
lim,,_,, Re(m/m+1),(t) = f(t)
point-wise on [—7,7].
(b). For any finite real Baire measure p on [—7, 7], satisfying
u(t-7) = u(lx)).

there holds

lim,,, Re(m/m+1),(t)dt = dpu(t)

in the weak-star topology on measures.
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Proof. According to Theorems 1.3.23 and 2.1.7, it is enough to show that

@, e

: Vm+1 5 k=0
lim,, -y =lim,_ —- =0,
Vm+1 z ( -1 _ )
| | Z =TT
k=0

compactly in an open neighborhood of (Cx{0})U (D X D).

First, we shall prove that

compactly into an open neighborhood of DxD.
Let £ >0,0<r<1and 0 <0 <1.Itis clear that our hypothesis is eq-

uivalent to the limit condition:

lim,, exp{Z:—é i(ﬂmky'} =,
k=0

nxl n

If follows that, for any x €C with |x | =1+ 6 andany z € D with |z| <r,we have

=lim,_,, [ Jexpyt=t——o

nx1 n

: k=0
llmm_)wH eXp —_— _n_Z
nxl n

> (r,.) > (r..)
o] B

xn

$6r.)
i

> lim,, ,, | Jexps £ . s

nx1

>lim,, Hexp{— ii(ﬂmk)’}
k=0

n=1 n
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=00 .

This means that there exists an integer M, = M (&) = 0, with

o< e p{( )"—(”m»;)"z"},

nx1

for any m > M, .In other words, there exists a M, = M (&) such that m > M, and |Z| <r

implies

k=0 n>1

(-]

o> exp{ReZZ

or, in other words,

ZRe logl— >’ [

nx1 1

J <10g8+ZRe{logl > — (z;rmk }

n=1

Observe that the expressions

Re{logl Zn( . j} and Re{logl—Z%(zzrm’k }
n=l n>1

are the Taylor series developments of the functions

log and log‘ 1- ﬁm,kz‘ ,

l_ ”m,k
X

respectively. We can therefore rewrite our last inequality as

ZIOg

, z| < r . By the maximum principle for subharmonic functions, we

<10g8+210g‘1 zr, ‘

for m > M,,

X =
immediately obtain

ilog‘x - ﬂm’k‘ <loge + ilog L T, o+ log[r’”+1 (1+ 5)’"“]
k=0 k=0 z
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for m=M, x| <1+9, z| < r. This can also be written in the form
ﬁ‘x—ﬂm,k‘ < Sﬁl—ﬂm,k ! (1+5)'"+1 (m=M,, x| <149, z| <r).
k=0 k=012
If, in particular,
§=5=—" (=01-5)r=1),
r

then we get

uniformly on
{(x,z)e c’ :|x| < l,|z| < r} .
r

Summarizing, we have showed that
lim

compactly into the open neighborhood
@ = UOSKI{(x,z) eC’:|x < l,|z| < r} of DxD.
r

Since @ contains also C x{0}, the Proof of Corollary 2.1.8 is complete.
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2.2. Integral Representations

2.2.1. Integral Representations and Padé-Type Operators

Until now, we have defined and studied Padé and Padé-type approximation to harmonic
functions in the unit disk D, as well as to 27 — periodic real-valued L” — functions on the unit
circle C or the compact interval [— 72',72']. In any case, the structural development and main

ideas of our theory were analogous to the classical theory on rational approximation to analytic

functions.
Really, no situation is quite as pleasant as the L* —case. In this Paragraph, we shall

look for another way to introduce Padé-type approximants to L* — functions and to harmonic
functions. Our method will rely on integral representation formulas and lead to a number of

interesting approximation results.
To begin our discussion, let us consider any real-valued L* — function u(z) defined on

the circle C . Suppose the Fourier series expansion of u(e”) is

o0

vt
S o

V=—00

Since u is square integrable, the sequence of its partial sums

{Zn: oe” in= 0,1,2,...}

converges to u(e”) in the L* —norm. Let P(C) be the vector space of all complex-valued

analytic polynomials with coefficients in C. For every
plx)=2 B <P(C),
v=0

we denote by ﬁ(x) the polynomial
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Define the linear functionals
T, :P(C)—> C and S, :P(C)—>C
associated with u by
T, (xv):= o, and S, (x”):= o, (v=012,.).
As it is well known, the Poisson integral of u(z) = u(e”) (|z| = 1) extends to a harmonic
real-valued function
u(z) = u(re”)
in the unit disk D (|z| <1,0<r< 1). This harmonic function being the real part of
some analytic function in D, we immediately see that

W):Ev =0, = Su(xv)

for any v >0.

More generally, we have the following

Proposition 2.2.1. For every p(x)eP(C), it holds

S (px)=T,(p(x)) and 5,(p(x))=T,(p(x))

Proof. Let
px)=3 Bx" <P(C).
v=0

By linearity, we obtain
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and moreover

Corollary 2.2.2. For every p(x) € P(C), there holds

ReT,(p(x)) = Res, (p(x))

and

ReT, (p(x))=Res, (p(x)).

Now, observe that the linear functional S, can be extended continuously on the space

r (C ) of all complex-valued that are square integrable functions on the unit circle C . Indeed, if
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v=0 v=0
2
= i:[”” u(e”)(; Ev -e_MJdt
1 2
=I5 _7; u(e”)p et <c, |p(x) 2,

for some positive constant ¢, depending only on u. Hence, by the Hahn-Banach
Theorem, there is a continuous linear extension of S, on LZ(C). It follows, from the
Riesz Representation Theorem, that there exists a unique F|, € r (C) such that

5,(2)= &) Eac =1 [gle?) ") e do

C

for all ge LZ(C). If, in particular,

g¢)=¢",
then
Su<§v)=.[ §vmd§=i .Teiwg F;(eia.)eiﬁde‘
C -
But
s.(¢)=0. = ﬂu(ew) ¢"do,
and therefore
F o?)= _; u(eiﬁ) o0
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This implies that

forall ge LZ(C). In view of Corollary 2.2.2, we have thus obtained the

Theorem 2.2.3. Let

M = (ﬂ-m,k )mZ0,0SkSm

be an infinite triangular interpolation matrix with complex entries and, for any m >0, let

G, (x,z) be the unique polynomial of degree at most m which interpolates the function

(1=xz)"

at x=r Ty aseees oy (2 2 fixed and ‘ﬂ'mk‘ <1).

m,0°

T

m,1°
(a). For any real-valued function ueLz(C), the corresponding Padé-type approximant

Re(m /m+ l)u (Z) to u(z) has the following integral representation

Relmm+1),(2) = - [ulg) REITOLED M g ().

2rwi ¢
Equivalently,
(m/m+1 ju(e 2Re{G (e . ) 41”} 40
= i ]E u(ei‘g)Re{4”~C_;m(ei9,eit)—1} do (-z<t< 71')

(b). Let f ELZ[— T, 7[] be a 2m — periodic real-valued function, with Fourier coefficients

{cv v = 0,i1,i2,...}. Since

HELLENIC ARMS CONTROL CENTER PUBLISHING
published on line as an e-book in 2007
www.armscontrol.info

220




N.J.DARAS PADE-TYPE APPROXIMATION TO FOURIER SERIES

=3 c.-e”

in the L* — norm, the function f (t) can be viewed as a function of the unit circle, and therefore

the Padeé-type approximant Re(m/ m+ 1) , (t) to f (t) has the following integral representation

Re(m/m +1), () = j 1(0) 2Re{5m (¢, ")- i}d@
= i ]E 7(6) Re{47z : C_;m(e“g,e”)— l}d@ (-z<t<nm).

-

In order to simplify the formalism, we shall also make use of the notation

ReB,(£,2)
¢

for the kernel

Refdr G, (¢,2)-1)

1.e.

and

ReB, (e”,e” ) = Re{47r G, (eig,ei’ )— 1}.

As it is pointed out in Paragraph 1.3.2, the function Re(m/m +l)u(z) (|Z| =1)

is continuous. Hence, the integral operator Re(m/m+1) maps Lé(C) into Ly, (C) and

therefore, by the Closed Graph Theorem, it is continuous (of course, under the
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assumption that ‘ﬂ-mk‘ <1 for all kK <m). Here, Lé (C) denotes the Hilbert space of all

real-valued functions that are square integrable in the circle C. The integral operator

Re(m/m+1): L}, (C)— L2 (C)

(o) Relmfm +1),(2)= S [ ale) 2262

is called the Padé-type operator for L (C)
Its adjoint is given by
Re(m/m +1) :L}(C)— L (C):

u(z) > Re(m/m +1), (z) = LI u(é’)w dc .

27 z
In fact, to Re(m/m +1) there corresponds a unique operator
Re(m/m +1) :Lg (C) - L (C)
satisfying
(Refon/m +1), ) = (. Relonfm + 1))

1.e.

[ Relonfm +1,€) w(¢) d< = ] u(z) Relmfm +1),(2)

C C

for all u,we LZ(C). Since, by Fubini’s Theorem,

[ Relom+1),(€)wlehig = | -1 (o) BB o ey
o u(z)(zim. [ wic) Rebaled) d;] .

we conclude that
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Relnfm + 1), (2)= - [ wie) R (e (o)

Tl

Similarly, as it is pointed out in Paragraph 1.3.2, for any real-valued 27 — periodic
function f e’ [— T, 7[], the Padé-type approximant Re(m/ m+ 1) r (t) is continuous, and, by
construction, 27 — periodic. It follows that the integral operator Re(m/ m+ 1) maps the space

L ( [— 72',71'] of real-valued 27 — periodic functions of L’ [— 71',71'] into itself. Hence, by

R, (27— per)
the Closed Graph Theorem, this operator
Re(m/m+1):L2 27— per [ s ﬂ-]_)L2 (277 per [_7[ 7[]:
f(e) Re(m/m+1),(¢)=—- I 7o ReBm(eig,ei’)dé’

is continuous. It is called the Padé-type operator for LR,(zﬁ_per)[— 7[,7[]. Its adjoint
operator is then given by

Re(m/m+1) :L2 (27—per) [ T, 7r]—>L (2~ per)[—ﬂ' 7]
f()l—)Re(m/m+1) =—- .[ f ReBm<eit,ei9)d9 )

In fact, to Re(m/ m+ 1) we associate the unique operator

Re(m/m + 1)* : Lé,(zﬂ_per)[— 7z,7z] — L (

s 27r—per)[_ 7[’ 7[]

satisfying
<Re(m/m + 1)f,g> = <f,Re(m/m + 1);>’

or, in other words,

T Re(m/m+1),(r) g(t) dr = T £(0) Re(m/m+1),(6) do
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forall f,ge Lfe,(zﬁ_per)[— T, 7z].It follows, from Fubini’s Theorem, that

iRe(m/m+1)f(t)g(t) di = ijf ReB, (. e Mo ot

and consequently

Re(m/m + 1); (6’) =— I g(t) ReB, (eig,ei’ ) dt (g € Lf},(zﬁ_w)[— I, 7[])

=T

Summarizing, we have proved the

Theorem 2.2.4. If m =0, then, for any u(z) el (C) and any f(t)e Lé)(zﬁ_per)[— 7[,7[] , it

holds

Re(mfm+ 0[(2) == [ ulg) ReB=6) 4

27i v z

and

The continuity property of Padé-type operators Re(m/m+1) can be used to

prove new convergence results:
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Theorem 2.2.5. (a). If the sequence { u, € L, (C ) n= 0,1,2,...} converges to u € L% (C) in
the [* — norm, then

lim, ,, Re(m/m+1), (z)=Re(m/m+1),(z)
in the L’ — norm .

(). If the sequence {fn € L?{,(Zﬂ'—per)[_ T, 7[] n= 0,1,2,...} converges  to

fe L?{,(Z/z’—per)[_ 7[,72'] in the LI’ — norm, then
lim, ,, Re(m/m+ l)f” () =Re(m/m+1),(1)

in the I* — norm.

For series of functions, there is a direct consequence of this Theorem:

Corollary 2.2.6. (a). If the series of functions
u(z) = ian -u,(z) (an eR,u, € L (C))
n=0
converges in the L — norm, then

Re(m/m +1),(2) = z Re(m/m +)u, (2)

in the L* — norm.

(b). If the series of functions

6= a,-£,0) a,eR. £, € L2y o= 7.7))

n=0

. 2
converges in the L — norm then
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Re(mfm +1),()=3 a, Re(m/m +1), (¢)

n=0

in the I* — norm.

Let us now determine conditions under which the integral operator Re(m/ m +1) is

compact onto th( )[— 71',7z]. Since, for each fixed te[— 7[,7[], the kernel function

27— per

ReB, (eig,eit) is bounded in @, it follows, from Tonelli’s Theorem, that

Theorem 2.2.7. If there is a constant ¢, < o0 such that
]E ‘ReBm (ei‘g,ei’) ‘ *d0<(27)c.
for almost all t €[~ 7, x|, then the Padé-type operator
Re(m/m +1): Ly

27r—per)[_ 7, ﬂ-] - LzR,(27r—per)[_ T, 7[]

is compact. Moreover

|Re(m/m +1)|< 2z)"* -c.

and Re(m/m + 1)* is also compact.

It is readily seen that if the Padé-type operator

Re(m/m + 1) L?{,(Zﬂ'—per)[_ 7T, ”] - L?{,(Z/r—per)[_ 7, 7[]
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is compact, then it is not one-to-one. This follows from the fact that
: 2
dlmLR,(Zﬂ—per)[_ 7T, ﬂ.] =0,

and therefore 0 must be an eigenvalue of Re(m/ m+ 1).

However, it would be interesting to know necessary and sufficient conditions under

which, for any % € Lﬁ)(zﬂ_m)[— T, 7[], thereisa f € Lﬁ)(zﬂ_ per)[— 7[,7[] with

Re(m/m+1), =h.
Of course, a general such a condition is given by the inequality

HRe(m/m + l); H 2 171 -

This inequality can also be written in the form

]Z |f(t) |2dt50]5 ]r- f(e)ReBm<ei’,ei9)d9 dt

for some constant ¢ >0 and any feLé,(zﬂ_per)[— 7r,72']. Obviously, this inequality

holds if and only if

|f(t)|£c

T 7(6) ReB,(¢",¢”) do

for almost all ¢ e [— 72',7r], and thus we have proved the following

Theorem 2.2.8. If there is a constant ¢ > 0 such that

|f(t)|£c

T f(6)ReB, (¢",¢”) de‘
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almost everywhere on [— 7[,7[], for every fELZR,(27r—per)[_ 7[,7[], then the range of

Re(m/m + 1) equals Li{,(Z;z’—per)[_ 7[,72'].

Let us finally turn to integral representation formulas in the harmonic case. If u is

harmonic and real-valued in the unit disk, then, for any 0 < 7 < 1, the restriction

u,(t)= u(re") (-z<t<z)
of u(z) to the circle of radius » can be interpreted as a real-valued, 27 — periodic function in
r [— 7[,7[]. According to Theorem 2.2.3, the Padé-type approximant Re(m/ m+ l)u, (t) to u, (t)

is given by the integral representation formula:

Re(m/m + l)u, (t)= i ]{ u,(6) Re{47r G, (r e’ re" )— l}d9

= i h ur(reig)Re{47z G, (rem,re"’)—l}dﬁ.

-

After applying the simple change of variables
z=re" and £ =reé”,

we obtain

and hence we can state the following
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Theorem 2.2.9. Let

M = (ﬂ-m,k )mzo,OSkSm

be an infinite triangular interpolation matrix with complex entries and, for any m > 0. Let also

Gm(x,z) be the unique polynomial of degree at most m which interpolates the function
—1 .
(1 —xz) at X = 7, 057 157y 250es My (218 fixed and ‘ﬂ'mk‘ <1 whenever k <m).

The Pade-type approximant Re(m/m+l)u (z) to the harmonic real-valued function

u(z) in the disk is given by the following integral representation formula:

Re{mfm +1),(2)= - J % ReB, (C.2)de  (zeD).

As it is mentioned in Paragraph 1.2.1, the function Re(m/ m+ l)u (Z) is the real part of
an analytic function in the unit disk, and therefore, it is a harmonic real-valued function in D (of
course, under the assumption ‘ﬂ'm’k‘ <1 forall k <m).If Hy (D) is the space of all harmonic

real-valued functions in D, the integral operator
Re(m/m+1): Hy, (D) — Hg(D)

:u(z)HRe(m/mH)u(z):L j u¢) ReB,((,z) d¢

270y 6

is said to be a Padé-type operator of Hy, (D)
It is easily seen that a Padé-type operator of H, (D) is continuous.
For, if {u, € Hy(D): n=0,,2,...} and

lim . u :ueHR(D)

n—>0 n
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compactly in the disk D, then, by the maximum principle for harmonic functions, we

have

Re(m/m+1), (z)-Re(m/m+1), (zj

un

=Sup|,_, ‘Re(m/m +1), (z)-Re(m/m+1), (z)‘

- s [ )l o

27 =

sup,

z‘Sr

u,(0)-u()]}

1
<—2rnr {Sup‘z‘:,,m:,p{e Bm (é/’ Z)|} {Sup‘d:r

2rr
< L(r,m) {Supm:, u, (5)_ ”(§)| }

for any r <1. Hence, the continuity of Re(m/m + l): Hy (D)—) Hy (D) follows.

As for the I — case, the continuity of the Padé-type operator for H R (D) leads to some

interesting convergence results.

Theorem 2.2.10. If the sequence {un n= 0,1,2,...} of harmonic real-valued functions in the
open unit disk converges compactly to u € Hy (D), then there holds

lim, ,, Re(m/m+1), (z)=Re(m/m+1),(z)

uﬂ

compactly in D.

Corollary 2.2.11. If the series of harmonic real-valued functions

W)= 2a, ) (o, <R, Hy(D)

converges compactly in the disk, then
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Re(m/m+1),(z) = > a, Re(m/m+1), (2)

n=0

the convergence of the series being compact in D .

Remark 2.2.12. In [23], Brezinski showed that the (Hermite) interpolation polynomial G,, (x, z)

—1 . .
of (l—xz) at X = 7T, (s 7T, 15e-s 7T, 1S given by

m,m

— 1 _ Vm+1(x) -1 _
G, (x,z)= — (1 Vm+1(zl)] (227 k=0,1,..m),

(x) is any generating polynomial

Vm+1(x) =7 H(x_ ﬂ-m,k) (7/ * 0)
k=0
We thus obtain the following analytic expressions for the two kernels

—ReB’Z(g’Z) and ReBm(eig,eit) :

ReB,({,2) .. 4 [T - _
& = Re{l—gz(l gl—mmj 1}

where V.

m+l

and

respectively.
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The investigation of more useful and simple expressions for these two kernels,
as well as their deeper properties remain to be studied and could be constitute an

interesting direction of research.

2.2.2. Integral Representations and Composed Padé-Type Operators

We are now in position to generalize definitions and results of Paragraph 2.2.1 to the
context of composed Padé-type approximation.
Set
12(C):= {u € I7(C): u is complex —valued function}
L’é,(zﬂ_pe,)[— 7[,7[] = {f el” [— 7z,7r]: [ is complex —valued and
27 — periodic (: f(=m)=f (7[)) function}

and

H(D):={u: D — C:u is harmonic and complex —valued function}.
From Theorems 2.2.3 and 2.2.9, it follows immediately the

Theorem 2.2.13. For j=1,2, let

M) = (ﬂ.(/’)

m,k )mZ0,0SkSm

be an infinite triangular interpolation matrix with complex entries 72';7 3{ e D, and, for any

m=0, let G,(nj)(x,z) be the unique polynomial of degree at most m which interpolates the

Sfunction (1 - xz)f1 at x = ﬂ,(n’ 2),72',(,'11; %,...,ﬂ,(,'l’; Zn (z is regarded as a parameter). If

G

we denote by G, (x,z) the polynomial
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> g/"(z)x
v=0
Put
BY(x,z) =47 GU)(x,z)-1.
(@). For any u=u, +i-u, Lé(C), the corresponding composed Padé-type approximant

(m/ m+ l)u (z) to u(z) has the following integral representation

~ ReB,(n1 (¢,2) . ReB(¢,2)
(m/m+1),(z —?J‘ { T+zu2(z)7 ¢

QZ| = 1).Equivalently

(m/m+1)u(e"’)=2L I {ul(eig)ReB,(;)( v ”)+1 uz( )ReB(z)( v ”)}d@

T
(— Tt< 7[)
(b). For any f=f+if,¢€ Lé,(Zﬂ'—per)[_ 7[,7[], the corresponding composed Padé-type
approximant (m/ m+ 1)_ ; (t) to f (l‘) has the following integral representation

(mfm+1),0) == [ {#(0)ReBL(” ")+ £,(0) Re BE (")} 0

27 °
(— T<t< 71).
(c). For any u=u,+iu, € H (D), the corresponding composed Padé-type approximant

(m/ m+ l)u (Z) to u(z) has the following integral representation

<m/m+1>u<z>=ﬁg[z{w(z)%Huz(;)—ReBiz@ =Z>}d;

( |Z| < 1).
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In view of Theorem 1.2.15, we can also give integral representation for classical Padé-type

approximants to analytic functions:

Corolary 2.2.14. Let
M = (ﬂm,k )mZ0,0SkSm

be an infinite triangular interpolation matrix with complex entries 7, , € D, and, for any

m>0, let Gm(x,z) be the unique polynomial of degree at most m which interpolates the

. -1 .
function (l - xz) at X = 7T, o, 7, 15 T, (2 s regarded as a parameter).

if

denote by G_m(x,z) the polynomial

> g"E)x
v=0
and put
B, (x,z):=4r G_m(x, z)-1.
For any f € &D), the corresponding Padé-type approximant (m/ m+ l)f(z) to f (Z) (in the

Brezinski sense of [20]) has the following integral representation
1

(m/m+1),(z) = — .[ f(g)w

= d z|l < 1).
27 |1y ¢ ¢ (<)
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Under the assumptions of Theorem 2.2.13, each one of the following integral operators
(m/m+1): L(C)— L(C):
u=u, +iu, = (m/m+1 u()

_ ! ReB)(Cz) .\ ReBIC 2)
o] R g R

(m/m + 1) : LzC,(Zﬂ—per)[_ 7, ﬂ.] - Lé,(Zﬂ'—per)[_ 7, ﬂ-]:

f=fi+if,— (m/m+1)f(t)
Z—J. 0)Re B! (e'e,e”)+if2(9) ReB}EqZ)(eig,e"’)}dﬁ

and
(m/m—i-l):Hc(D)—)HC(D):
u=u +iu, = (m/m+1) (z

)
U oo ReBYE) o ReBEC2)
o [ e R o R

is called a composed Padé-type operator for LéﬁLé,(Zﬂ—per)[_ﬂ-’ﬂ-] and HC(D),

respectively.

Under the assumptions of Corollary 2.2.14, the integral operator

(m/m+1): (D)~ OD): f > (m/m+1),(z) = jf(;)_ReBm(&ﬂd

. 4
27E )y ¢

is called a Padé-type operator for (D).

The continuity property for these integral operators follows directly from arguments cited

in Paragraph 2.2.1 and leads to some new convergence results:
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Theorem 2.2.15. Under the assumptions and notations of Theorem 2.213 and Corollary 2.2.14,

(a). if the sequence {un € Lé (C) m= 0,1,2,...} converges to U € Lé (C) in the L* — norm, then

lim(m/m + l)un (z) = (m/m+1),(z)

n—o0
. 2
in the L — norm;

(). if the  sequence { f, € Lf;’(zﬂ_ Per)[— T, ﬁ]:n = 0,1,2,...} converges  to

fe Lé’(zﬂ_per)[— 7[,7[] , with respect to the I’ — norm, then

lim (m/m + l)fn ()= (m/m+ l)f (¢)

n—»00
. 2 .
in the L — norm;

(¢). if the sequence {un eH, (D):n = 0,1,2,...} converges to u € H, (D) compactly in D, then

lim(m/m + l)un (z)=(m/m+ l)u (z)

n—»o0
compactly in D;

(d). if the sequence { f,edD):n= 0,1,2,...} converges to f € (D) compactly in D,

then

lim(m/m + l)fn (z)=(m/m+1),(z)

n—>0

compactly in D.
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Especially, for series of functions, we have the following immediate consequence:

Corollary 2.2.16. Under the assumptions of Theorem 2.2.13 and Corollary 2.2.14,

(a). if the series of functions

0

u(z) = Zan u, (z) (an eCu, € L (C))
n=0
converges in the L — norm, then

o0

(mfm+1),(z) =23 a, (m/m+1), (2)

n=0

. 2
in the L" — norm;

(b). if the series of functions

0

f6)=>a, 1) (an €C,f, € Lt (1 per)— ””])

n=0

. 2
converges in the L -norm, then

o0

(m/m+1)f(t) = Zan (m/m+l)fn (t)

n=0
. 2
in the L — norm;

(©). if the series of functions

o0

u(z)=> a, u,(z) (a, &C.u, € He(D))

n=0

converges compactly in the disk D, then

o0

(m/m+1),(z) =2 a, (m/m+1), (2)

n=0

compactly in D;
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(d). if the series of analytic functions

1)=Ya, £,2) (g, <c, £, ccAD))

n=0

converges compactly in D, then

(m/m+l)f(z): ,,Z:;a" (m/m+l)fn (z)

compactly in D.

Remark 2.2.17. Padé and Padé-type approximants to arbitrary series of functions were first

considered by Brezinski in [20] and [26].
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Chapter 3

Higher Dimensional Analogous:
Generalized Padé and Padé-Type
Approximation and

Integral Representations

Summary

For complex dimensions greater than one, the most highly appreciated theorems on rational approximation
have no obvious analogous. Further, the “iterated” Padé and Padé-type theory is based on the multidimensional Cauchy
kernel and leads to extremely complicated computations. In this Chapter, we will replace the multidimensional Cauchy
kernel by the Bergman kernel function Kq(x,z), and we will define generalized Padé and Padé-type approximants to any
f in the space OL*(Q) of analytic functions on Q which are of class L?. The characteristic property of these
approximants is that their Fourier series representations with respect to some orthonormal basis for OL*(Q) match the
Fourier series expansion of fas far as possible. After studying the error formulas and the convergence problems related
to this approximation, we will show that generalized Padé-type approximants have integral representations that give
rise to the consideration of an integral operator, the so-called generalized Padé-type operator. This operator maps every
f € OL*Q) to a generalized Padé-type approximant to . By using the continuity property of this operator, we will
obtain convergence results about series of analytic functions of class L*. Next, we will discuss extensions for the notion
of generalized Padé-type approximation to continuous functions on a compact set £ in R” satisfying Markov’s

inequality (M;) with respect to some measure or classical Markov’s inequality (M ). Further, we will give integral

representations and consider generalized Padé-type operators for the space C(E) of all continuous functions on £. Our
study will conclude with an extension of these ideas into every functional Hilbert space H and also with the definition
and properties of generalized Padé-type approximants to a linear operator of H into itself. As an application, we will
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prove a Painlevé-type theorem in case of arbitrary bounded open sets in C", and we will give numerical examples
making use of generalized Padé-type approximants.

Introduction

The principal aim of this Chapter is to present a generalization of Padé and Padé-type
approximation theory in several variables.

Translating a result from one complex variable to several is more involved than merely
saying ‘“Now, let n >1”. Indeed, many arguments in one variable use the Taylor power series
expansion of analytic functions into the open disks. In several variables, the open polydisks do
not enjoy a very elevated status and the domains of convergence of the power series
representations exhibit a much greater variety than in one variable. On the other hand, if n>1,
the ring P(C") of complex analytic polynomials in C" is not principal and henceforth it is not an
Euclidean ring. This means that whenever n >1 there is no division process in P(C"), which in
particular implies that the cherished notion of continued fraction is absent from the theory of
functions of several complex variables. Furthermore, in contrast to the one variable setting, there
is no facility in the management of a logical connection between two apparently related
mathematical entities: the polynomial of C" and its degree.

So, if one would like to adapt the simple proofs in one variable to the case of several
variables, then three major obstacles present themselves. First, the local representation of a
function analytic into a domain in C" by its Taylor series may lead to extremely complicated and
difficult computations. Second, the polydisk does not qualify to be the general target domain
because of the failure of the property to be the maximal domain of convergence of a multiple
power series. Finally, there is no division process in P(C"), when n > 1.

Since, because of all these reasons, many of the most highly appreciated theorems on
rational approximation have no obvious analogue in several complex variables, one might expect
that the theory of Padé and Padé-type approximants in C" lacks the appeal of the classical one

variable theory. We want to show how some of our favorite results in one complex variable can
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be viewed in order to obtain interesting generalizations in several variables. More precisely, we
shall show how the proofs of multidimensional «rational» approximation theory can be cleared of
their dependence on the polydisks and the methods of Taylor series and reconnected to
Brezinski’s original ideas, on Padé-type approximation ([19], [20], [21], [22] and [23]).

It is reasonable to suspect that the outlet lies with the consideration of another type of

series representation for analytic functions. By the classical theory of Hilbert spaces, every

function which is analytic and of class L’ into a bounded open domain in C" has a Fourier series
representation in terms of an orthonormal basis. Thus, the natural perspective that comes to mind

is simply this one: we will be able to extend Padé-type approximation theory to analytic

functions, which are of class I? into a bounded open subset of C", if we know a few of its Fourier
coefficients. Notice that a great gain in this new approach will be the global validity of our
approximation results.

We have probably convinced the reader that the treatment of such a global method is

limited to the special class of analytic L* functions. We will feel better, if the reader discerns that
analogous definitions and results hold also for continuous functions on a compact set in R”
verifying a Markov property, and, more generally, for the elements of any functional Hilbert

space H , as well as for any linear operator H — H . This extension insures the powerful global

character of the above ideas.

In some sense, the development of these methods will manage to cut us off from the roots
of Padé and of Padé-type approximation. We certainly do not advocate abandoning the beautiful
machines that have been developed. What we do advocate is a reinvestigation of the basic
directions of the subject.

Since most numerical analysts are not familiar with complex analysis in C", Section 3.1,
will first collect some standard definitions, terminology and results of the theory of several
complex variables. Next, Section 3.2 will give a different approach to classical Padé-type
approximation in many complex dimensions. For this purpose, we may observe that, when the

complex dimension # is equal to 1, the most important kernel in integral representations of
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analytic functions is the Cauchy kernel (1 - xz)_1 ; any Padé and Padé-type approximation in one
complex variable is based on the free choice of polynomials interpolating this kernel. For
complex dimensions n greater than 1, the classical “iterated” Padé and Padé-type theory,
developed briefly in Section 3.1, is based on interpolations of the multidimensional Cauchy kernel
function (1 - X2, )_1...(l—xnzn )_1 in polydisks. Unfortunately, this “iterated” approximation
process is restrained only into polydisks and leads to extremely complicated computations. So, in
Paragraph 3.2.3 of Section 3.2, we will replace the multidimensional Cauchy kernel by the
Bergman kernel function into an arbitrary open bounded set {2 in C":
KQ(z,x):KQ(ZI,...,zn,xl,...,xn).
As it will be mentioned in Paragraph 3.2.1 of this Section, the Bergman kernel function

K, (Z,x) belongs to the Hilbert space OL*(Q) of all functions that are analytic and of class L’ in
Q). For any orthonormal basis {(pj 1j= 0,1,2,...} for OL*(Q), one has the representation
KQ(Z’X): Z@j(z)(p_/(x)’
=0
whenever z € Q and xeQ. Our idea is then to replace K (Z,X) by simpler interpolating
expressions consisting of generalized polynomials.

To do so, for any m=0,1,2,..., we will consider the (m+1)—dimensional complex

vector space @, which is generated by the Tchebycheff system {ao,a,...,wm i }and suppose

that @, ., satisfies the Haar condition into a finite set of pair-wise distinct points

Mer]:{ﬁm,O’ﬁm,l""’ﬂ-m,m }CQ with

M, s VU< cm Kergp?j =0.

(In other words, we will suppose that every function in @, ,, has at most m rootsin M, . For

further information about Haar’s condition the reader is refereed to the Paragraph 3.3.2 of
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Section 3.2.) Then, for any fixed point z € Q) , there is a unique generalized polynomial

gm (x’Z) = ZC;m)(Z)(Dj (x) € q)m+1 2

J=0

such that
gm(ﬂm,k,z): KQ(z,ﬂm,k),for any k<m .

The Bergman kernel function K, (Z,x) is then replaced by interpolating generalized polynomials
g, (x,z), and, by using approximate quadrature formulas, we will define generalized Padé-type
approximation to any f € OL*(Q) : the function

N (f) (m) 2

Zaj ¢, (z)eOL Q)

j=0
is said to be a generalized Padé—type approximant to f, with generating system
M, = {ﬁm)o,ﬁm)l,...,ﬂ'm,m } Here aﬁf Vis the j” order’s Fourier coefficient of f with respect to

the basis {goj cj= 0,1,2,...}:
a"=[fopdv.
)

Further, as it can be easily shown,

c}”’)(z):zKQ(Z’ﬂm’k) (0<j<m).

k=0 ¢] ﬂm,k

m

The terminology used here is due to H.Van Rossum, who in [141] was first introduced
the notion of generalized Padé approximants.

The characteristic property of a generalized Padé-type approximant to f € OLX(Q) is the

following one: if
i b""p,(z)
J=0

is the Fourier series expansion of a generalized Padé-type approximant with respect to the basis
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19,17 =0,1,2,...J, then

(m.f) — () ;
b =aj’, forany j<m.

After studying error formulas and convergence problems related to such an
approximation, we will show that the generalized Padé-type approximants have integral
representations which give rise to the consideration of an integral operator, the so-called

generalized Padé-type operator
OL Q) —> 0L Q): f | f(x K, (z,x ./ dV(x).
R noni

It maps every f € OL*(Q) to a generalized Padé-type approximant to f . By the continuity
property of this operator, we obtain convergence results about series of analytic functions of class
L.

Next, Paragraph 3.3.1 of Section 3.3 will deal with brief presentations of some basic
material needed in the sequel. More precisely, we will remind fundamental results about Fourier
representations of continuous functions on compact subsets of R" verifying a Markov inequality,
and, we will give an expository reference to the main classes of compact sets having this
property. Paragraph 3.3.2 will contain a natural extension of the notion of generalized Padé-type

approximation to continuous functions on a compact set £ R" satisfying Markov’s inequality
(Mz) with respect to a measure on £ . The characteristic property of such an approximation is
exactly the same with the corresponding one for the case of analytic L — functions into an open
bounded subset of R”. As in the analytic L — setting, each generalized Padé-type approximant to
a continuous function (on a compact subset of R" satisfying (Mz) with respect to a measure) has
an integral representation, and thus, one can again define an integral operator, the so-called
generalized Padé-type operator for the space C” (E ) of all continuous function of class C* on
E:
C*(E)— C*(E).
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This operator maps every continuous function of class C* on E to a generalized Padé-type
approximant to this function. Application of this operator furnishes useful convergence results.
Comparatively with the analytic L’ setting described in Paragraph 3.2.3 of Section 3.2, the

continuous case will impose the self~summability property for the orthonormal basis

{(pj iy =O,1,2,...} in LZ(E,,u). Finally, in Paragraph 3.3.2, it will be shown how one can

approximate in the generalized Padé-type sense every function u € C °°(E ), whenever the

compact set £ satisfies Markov’s classical inequality (Mw).

In Section 3.4, our discussion will proceed with an extension of these approximation
methods into every functional Hilbert space H . One purpose of this Section will be the suitable
representation of generalized Padé-type approximants to elements of H , and, on the other hand,
the consequent definition of generalized Padé-type approximation to any linear operator
H — H . A second general purpose will be the study of the convergence behavior for a sequence
of generalized Padé-type approximants to an element of H or to a linear operator H — H .

The last Section is devoted to applications and examples. In Paragraph 3.5.1, by using
generalized Padé-type approximants to the Bergman projection operator, we will give an
extension of Painlevé’s Theorem in the case of arbitrary bounded open sets in C". Finally, in
Paragraph 3.5.2, two numerical examples will be considered making use of certain generalized

Padé-type approximants.

3.1. Preliminaries

3.1.1. Some Well Known Results in Several Complex Variables

This Paragraph begins at an elementary level with standard definitions and terminology,
followed by a systematic brief discussion of the various fundamental concepts of complex

convexity related to the remarkable extension properties of analytic functions in more than one
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variable. It then continues with a comprehensive introduction to Padé-type approximation in
many dimensions, and concludes with complete proofs of substantial local and global
convergence results.

The general theory of analytic functions of several complex variables was formulated
considerably later than the more familiar theory of analytic functions of a single complex
variable. Already by the middle of the 19™ century, Georg Griedrich Bernhardt Riemann had
recognized that the description of all complex structures on a given compact surface involved
complex multidimensional moduli spaces. Before the end of the century, Karl Theodor Wilhelm
Weierstrass (1815-1897) and Jules Henri Poincaré (1854-1912) had laid the foundation of the
local theory and generalized important global results about analytic functions from regions in the

complex plane to product domains in C* or in C". In 1906, F. Hartogs (1874-1943) discovered

domains in C* with the property that all functions analytic on it necessarily extend analytically to
a strictly larger domain, and it rapidly became clear that an understanding of this new
phenomenon, which does not appear in one complex variable, would be a central problem in
multidimensional function theory([75],[76]). But in spite of major contributions by F. Hartogs,
E.E. Levi ([95],[96]), K. Reinhardt, S. Bergman, H. Behnke, H. Cartan, P. Thullen([32]), A. Weil,
and others, the principal global problems were still unsolved by the mid 1930s. We emphasize the
work of A. Weil, who generalized in 1935 the Cauchy integral formula to polynomial polyhedra
in C" and obtained an analogue of the Runge approximation theorem for such polyhedra([145]).
The peculiarities of several complex variables were well exposed and the central difficulties
clearly stated by the time of the appearance of the book [8] of H. Behnke and P. Thullen, but the
main problems were still there. Then, K. Oka, equipped with the Weil formula, introduced some
brilliant new ideas, and from 1936 to 1951 he systematically solved all the so-called fundamental
problems (Cousin problems, Levi problem,...) one after the other([113]). However, K. Oka’s
work had much more far-reaching implications. In 1940, H. Cartan began to investigate certain
algebraic notions implicit in Oka’s work, and in the years thereafter, he and K.Oka,

independently, began to widen and deepen the algebraic foundations of the theory, building upon
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K. Weierstrass’ Preparation Theorem([30]). By the time the ideas of H. Cartan and K.Oka
became widely known in the early 1950s, they had been reformulated by H. Cartan and J.P. Serre
in the language of sheaves introduced in 1945 by J. Leray. During the 1950s and early 1960s,
these new methods and tools were used with great success by H. Cartan, J. P. Serre, H. Grauert,
R. Remmert, and many others in building the foundation for the general theory of complex
spaces, i.e., the appropriate higher dimensional analogues of Riemann surfaces([69];[70]). The
phenomenal progress made in those years simply overshadowed the more constructive methods
present in K.Oka’s work up to 1942, and to the outsider, Several Complex Variables seemed to
have become a new abstract theory which had little in common with classical complex analysis.
In the sixties, L. Hormander, J. J. Kohn and C. B. Morrey deduced the main results of K. Oka
with the help of methods from the theory of partial differential equations and obtained, in

addition, estimates in certain weighted L’ —metrics for solutions of the Cauchy-Riemann
equations([82]],[85],[86]). Around 1968-69, G. M. Henkin and E. Ramirez -in his dissertation
written under H. Grauert- introduced Cauchy-type Integral Formulas on strictly pseudoconvex
domains. These formulas, and their application shortly thereafter by Grauert, Lieb and Henkin to
solving the Cauchy-Riemann equations with supremum norm estimates, set the stage for the
solution of hard analysis problems during the 1970s([79],[80]). In the seventies, integral
representations turned out to be the natural method for solving several problems related to K.
Oka’s theory, which are connected with the boundary behavior of analytic functions. The basic
tool is an integral representation formula for analytic functions discovered in 1955 by J. J. Leray,
which contains the Weil formula as a special case. A complete review on the integral
representation formulas for analytic functions is given in [124]. Certain developments of this
formula made it possible to solve several of such problems that are not easily obtained with other
methods. Moreover, it turned out that by means of these formulas one can build up a large part of
the theory of functions of several complex variables in a new and more constructive way. During
the 1980°s these developments led to a renewed and rapidly increasing interest in Several

Complex Variables by analysts with widely differing backgrounds.
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Let us first present some of the basic notation in several complex variables. For

n=12,.., the n—dimensional complex number space C'={z= (z1 32y 9ees 2, )ZZj eC
for j =l,2,...,n} is the Cartesian product of n copies of C. The classical Hermitian inner
product of C" is defined by

(z,w) = Z zjw_j (z,weC").
J=1

The associated norm |Z| =(z,z) Y2 induces the Euclidean Metric. The open ball of radius p >0

and center z €C" is defined by B" (Z, p) = {W e C"|

z— W| < p}. The collection of balls

{B "(z,p): p is a rational positive number} forms a countable neighborhood basis at z for
the topology of C". The topology of C" is thus identical with the one arising from the identification
of C" with R*. In fact, given any z = (21,22,...,zn)eC”, each complex coordinate z; can be
written as z; =x, +iy,; with x,,y, €R (i is always the imaginary unit \/__1 ); the mapping
C'— SRz (xl, VisXos Vasrees X, yn) establishes an R-linear isomorphism between C" and
R, which is compatible with the metric structures : a ball B” (Z, p) in C" is identified with an
Euclidean ball in R*" of equal radius p, and conversely. Often it is convenient to use another
system of neighborhoods: the open polydisk (or open polycylinder) A" (Z,r) of multiradius
r= (r1 NN ), r; > 0, and center z €C" is the Cartesian product of n open disks in C :
A" (Z,r)z {w= (w1 ,wz,...,wn)eG”: ‘zj - wj‘ <r;, for j= l,2,...,n}

= A (z,,r)x A (2,7, )x .. x A" (z,,7,).
More generally, a polydomain is the Cartesian product of n planar domains. A setQ) < C"=R”" is

open, if for every z € Q) there is a ball B" (Z, p) < Q orapolydisk A" (Z, r) c Q.
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For an open set Q cC" and d eNU {0}, C d(Q) denotes the space of d times
continuously differentiable complex valued functions on €; we also write C (Q) instead of

CO(Q).Fora fe Cd(Q),with d < o, we define the C* —norm of f over Q by

”f (@) ~ ; sup..q|D" f(2)
[v|<d VENZ”)

where D" is the differential operator

v

D'= 4
Vi Va Van-1 Van
K Gy

b

(M:vl Yy ety )

The space {f eC'(Q): ||f||Cd @ < oo} is complete in C? —norm |||| and hence it

(@)’
is a Banach space. Similarly, if €2 is bounded, the space

c (f_Z): {f e CY(Q): D" f extends continuously to Q for all v eN*" with

2n
|V| = ZV ;< d }
j=1
with norm

- recla)

W= X sw.alP"/@
|v]<d veNZ")
is also a Banach space. A function f:€2 —C is said to be analytic (or holomorphic) on Q, if

fecC' (Q) and fsatisfies the following system of partial differential equations

(hCR) lggz—f(z)zo for 1<j<nandze Q,

J

g 11 8 1.3
9z, 2] dx;, 8y, '

J

where we have used the notation

The most elementary examples of analytic functions on C" are the analytic polynomials
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kl kl‘l
p(x)=p(x,, %y, x, )= ZZ al” , ox.x
vi=0 v,=0

with @'”’ ~ €C. The multi-index k = (k1 ,...,kn)eN” is the degree of p(x). We will denote by

.......

P(C") the space of all analytic polynomials in C". Equation (hCR) is called the system of

homogeneous Cauchy-Riemann equations.

Let us give another representation for the solutions of the homogeneous Cauchy-Riemann

equations. Let € be an open subset of C" and let f € C' (Q); its differential (df )Z at ze Q is

the unique R-linear map R*" — R* which approximates f near z in the sense that

1&)= 1)+ (dr).(¢ - 2)+o(¢ - =)

In terms of the real coordinates (x1 s Viseees X5 V) ) of C"=R”", one has

(df)z = Zn: j}{ (Z)(dxj )z + Z;:%(dyj )z

ALY j

where d x; and d y; are the differentials of the real coordinate functions. Via the identifications
R*"=C" and R’=C, the differential (df )z can be viewed as a map C"— C which is R-linear, though
not necessarily C-linear. In particular, the differentials d x ; and dy ; are not linear over C. One
therefore considers the differentials d z ;= dx it idy ; (this is C-linear) and

dz_j =d x; —id x; (this is conjugate C-linear) of the complex coordinate functions. A simple

computation shows that

S
Ve
~
T
=
&
N\—/
+
M
Ve
[~
=
a
N\—/

df). = 4
(dr). 25, 20

were we have introduced the operator
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4 :l( 4 +l 4 ],forléjﬁn.
8z, 2\ %x, i3Iy,

It is directly verified that a function f € C' (Q) is analytic on Q if
Lo, ),

or equivalently, if and only if its differential (df )Z at z is a C-linear map, whenever z € Q).

(dr). =

Furthermore, it is obvious that any function f € C l(Q) fulfilling (hCR) satisfies the Cauchy-
Riemann equations in the z,-coordinate for any j, and hence is analytic in each variable

separately. It is a remarkable phenomenon of complex analysis that, conversely, any function

f :Q —C which is analytic in each variable separately is analytic in € ([71]). This shows that

the requirement f € C' (Q) can be dropped in the definition of analyticity.

The set of all functions analytic on Q will be denoted by O (Q). It is closed under
point-wise addition and multiplication. We will always consider O (€2 ) equipped with the natural
topology in which convergent sequences are precisely those which converge compactly on ). As

in the case of one complex variable, the basic local properties of analytic functions follow from

the Cauchy Integral Formula on polydisks : if f € C (A” (z, r)) N O (A" (z, r), then

/(£)
|¢=2]=r; (j=1.2.0n) (41 -w )VlJrl"-(gn - W, )VﬂJr1

(CIF) f(w)=Q2zi)” d¢,.d¢,,

for w=(w,...,w, )€ A"(z,7).

Applying Cauchy’s Integral Formula to A" (z, o ) cc A" (z, r) and differentiating under

the sign integral, we obtain

/()
o e (G =W )G, =, )

D' f(z)=v!(2zi)” dg,.dg,,
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(with v!=v .y, !). One can, of course, extend the Cauchy Integral Formula for analytic
functions with continuous extension on the distinguished boundary bQ =39Q, x...x 9Q  of a
polydomain Q=0 x..x€Q . It is also readily seen that for any v eN", 1<p< o0 and

U c c Q, there is a constant ¢ = c(v, p,U, Q) such that

Sup zeU

D' f(2)|<c|f], g forall €0 (Q)NL Q).

The space O () N L” () of analytic L” —functions on Q will be denoted by

OL"(Q). The Cauchy Integral Formula (CIF ) implies also strong convergence results: the

classical Weierstrass and Montel Theorems have natural generalizations in several variables.
Moreover, one can show that, via Cauchy’s Integral Formula, every analytic function can be
represented locally by a convergent power series.

To see this, we first remind the basic facts about multiple series, that is, formal

expressions

The multiple series Z P, is called convergent if

veNY

2|8

veN"

= sup{zwv tA s ﬁnite} <00,
veA

It is well known that the convergence of

ﬁ\/

as defined above, is necessary and sufficient for the following to hold: given any bijection

>

2.

veN"

o :N—N", the ordinary series

2 5ot
j=0

converges in the usual sense to a limit B € C which is independent of & ; this number B is called
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the sum (or limif) of the multiple series, and one writes

B=Yp,.

veN"

A power series in n complex variables ¢,,¢,,...,{, centered at the point

z= (zl 2 Zy e 2, ) €C" is a multiple series

2.5

veN”

with general term

IBV =Cv(é/_z)v =cv1,v2 ..... v (gl _Zl)vl (4/2 _ZZ)VZ"'(é,n _Zn)vn >

n

where ¢, €C" for v eN". Without loss of generality, we will only consider multiple power series

centered at z =0 . The domain of convergence of the power series

el = e, ol

veN” VsV =0
is the interior of the set of all points { €C” for which this series converges. Many familiar results
from the theory of ordinary series have easy extensions to multiple series. For example, the
following result generalizes Abel’s Lemma and gives the basic general behavior of convergent

power series: suppose ¢, € C for v e N" and that for some w € C" there holds

<0o0;

b

14
c,w

sup veN”

), the power series

PN

veN"

S Wy yeees [W,

letting 7 = QWl

converges on the polydisk A" (O, r) . From Weierstrass’ Theorem, it follows that a power series

&)= e,

veN"
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with nonempty domain of convergence Q defines an analytic function f € O (Q). The domain

of convergence (2 of the power series

28"

veN"
is a (possibly empty) complete Reinhardt domain. Recall that a Reinhardt domain Q with center

0 is an open circled (around 0) set in C”, in the sense that for every ¢ € € the torus

{w eCw= (é’lem‘ peens é’neig” )> with0< 0, <27z whenever j=1,..., n}

lies in € as well; a Reinhardt domain Q is complete if for every { € €2 one has
A (0.(¢-de,

We now show that, for every f €O (A" (z, r)), the Taylor series expansion of f at z

)ca.

9ol

converges to f onA" (z, r):

(Tse) flw)= ZDV'f(z)(w—z)V, for we A" (z,7).

vent Vi

In the Cauchy Integral Formula (CIF), applied to we A'(z,6)cc A'(z,7), one expands

(é’ - w)f1 = (é’ LW )71 (C . W, )71 into a multiple geometric series

@ ey e
R
This series converges uniformly for { € bA" (z, o ), since
qwj - ij;j _ZJ")S qwj - Zj‘/51)< 1
for such any ¢ and all 1< j<n.Itis therefore legitimate to substitute (Gs) into (CIF ) and to

interchange summation and integration, leading to (T Se) :
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n ) DY .
fw)=">|(27i) I L)Mdgl...d;n (w—z) = Z&(W_Z) _
veN” ‘g,—zj‘:é'. (é/ N Z) veN" V.
(j=1.2.... nj)
The following results are easy generalizations of the corresponding classical one variable results:

* if there is a nonempty open set [/ — (), such that f(z)z Ofor all zeU, and if Q is
connected, then f =0 on Q (:Identity Theorem);
if | f | has a local maximum at the point z € Q ,then f is constant on Q (:Maximum
Principle).
Next, let us consider a map F': Q —C" (Q is always an open set in C"). By writing
F=(f,, fysr f,) and f, =u, +iv,, where u, and v, are real valued functions on Q, we

can view F = (ul,vl,uz,vz,...,u \% ) as a map from Q cR* into R™™. If F is differentiable

m?> " m
. . . d . n m . . . . .
at ze (), its differential ( If )Z : R —>R™ is a R-linear transformation with matrix

representation given by the real Jacobian matrix

Su, $u,  Su, Su,

l9')"‘1 l9.);1 .”lgxn lgyn
JF) =] e (:2m x 2n matrix)

evaluated at z. The map F = ( FisSroer [ ): Q —>C" is called analytic, if its complex
coordinates f,, f,,..., f,, are analytic functions on €2. The composition of two analytic maps is

again an analytic map (:chain rule). If F is analytic, its differential (dF )Z at z is a C-linear

transformation with complex matrix representation
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dNhdh 81 84
9z, 9z, 8z, 9z,
JF)=| s (:m X n matrix)
IS 8L IS 81
9z, 9z, 9z, Yz,

evaluated at z ; it is easily verified that the analyticity of /' implies that
det Ju(F)=| det J(F)|*.

If, moreover, F': Q) —C" is nonsingular at z € Q (,i.e., det J(F)({) # 0), then there are open
neighborhoods U, of z and U,y of F (z), such that
[F/lu.]u. 5 UL,
is a homeomorphism with analytic inverse
[Flu.]" Uy, > U..

Motivating by this result, we may give the following Definition: given two open sets Q — C" and
Q' C”, we say that the map F': Q — Q' is bianalytic if F is an analytic homeomorphism with
analytic inverse F~' :Q'—>Q. If F is bianalytic, it follows from the chain rule that
[J( F )] (F (Z)) is the inverse matrix of [J«(F)](z); in particular, F' is nonsingular on Q (i.e.,
det[J(F)](z)# 0at every zeQ)and m=n . If F = (f1 s Sy fn):Q — Q' is bianalytic, we
also say that ( Sis froees fn) is an analytic (or complex) coordinate system on €2 . We are now in
position to introduce a local generalization of the concept of complex linear subspace of C* which
is invariant under complex coordinate changes : a set M < C" is called a complex submanifold of
C", if for every point ze€ M there are an analytic coordinate system ( fisSroees [ )on a
neighborhood U, at z, and an integer k& (0<k<mn), such that

MnNU= {Z eU.:f, (Z)Z 0 for j> k}; the integer k is called the complex dimension of M
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at z and is denoted by k =dim:M . Notice that dim:M  is independent of the analytic
coordinate system ( Sis fosees fn) and that dime¢M _ is locally constant on M and hence is

constant on each connected component of M . The dimension of M is defined by
dimeM=sup ,_,,dimc M _ . Every open set 2 —C”" is a complex submanifold of C". For another
example of complex submanifold, one can consider the zero set Z ( f, Q) = {Z eQ:f (z) = O} of
an analytic function f defined on the open set : if Q is connected and if Z( 1, Q);t@,
f #0, then there exists an open set D c Q such that Z( f ,D) is a nonempty complex
submanifold of D of dimension n—1 . In contrast to the one complex dimension case, the
zeroes of a function analytic in 2 or more variables are never isolated. Let us give a useful
description of complex submanifolds: a subset M of C" is a complex submanifold if and only if

for every ze M there are a neighborhood U_ of z, an open ball B , (a,S)CCk, and a
nonsingular analytic map. H : B (a, {;‘) — C" such that H(Bk (a, 8))= M NU,. The map H is
called a local parametrization of M at z . A function f : M — Cis called analytic at z € M if

foH™" is analytic into an open neighborhood of H ™' (Z), (for a local parametrization H of
M at z); f is said to be analytic on M if it is analytic at every z € M . The reader familiar
with differentiable submanifolds of R" (, i.e., curves, surfaces, e. t. ¢.) will have recognized the

obvious formal similarities between those concepts and the theory of complex submanifolds. But,

there are surprising differences as well, as evidenced by the following result, which has no
counterpart for differentiable or even analytic submanifolds of R": any compact complex
submanifold of C" consists of finitely many points. More surprising is the fact that an injective
analytic map F from an open subset € of C" into C" is necessarily nonsingular, and hence
bianalytic from Q onto F (Q) The proof of this fact is a consequence of some technical

elementary information about the zero set of analytic functions. No comparable result exists in
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real calculus.
In several complex variables it is important to study not just the zero set of one analytic
function, but also of several analytic functions, i.e., of analytic maps. As it is pointed out, the case

of nonsingular analytic maps leads us to the concept of a complex submanifold. The general case
is quite a bit more complicated. A subset A of the region Q —C" is called analytic in Q if A is

closed in Q and if for every p € A there are an open neighborhood U, of p in Q and an
analyticmap H ,:U —C"” such that U, ﬁA:{ZeUp :Hp(z):O}. A point p € A of an
analytic set A is called a regular point of A if there is a neighborhood W, of p, such that
AN W, is a complex submanifold of W, and a singular point otherwise. The set of regular

points of A is denoted by R(A): it is the maximal complex submanifold contained in A. Every
(closed in Q) submanifold M of QO —C" is analytic in Q, with R(A) = A ; in particular, Q

itself is analytic in €2. Each analytic subset A of a connected region  — C" is thin, (and hence
Q) — A is connected) or equal to Q. For further studies, the interested reader should consult
some of the specialized literature, for example [70], [71], or [107].

Let us now present a brief discussion of a phenomenon, which distinguishes, more than
anything else, function theory in several variables from the classical one-variable theory. In 1906,
Hartogs discovered a serious and fundamental difference between the case of one and many
complex dimensions stating that if K is a compact subset of an open set € in C", n > 2, such that

Q- K is connected, then every function f analytic in QQ — K can be extended analytically

into Q ([75]). The methodology of Hartogs’s Proof (which was adopted also by Bochner in 1943,
when he referred to the general problem of analytic and meromorphic extension ([12])) is based
on the use of Cauchy’s integral formula or Stokes’ theorem. In 1961, Ehrenpreis claimed that this
phenomenon is attributed to the behavior of the functions-solutions of the inhomogeneous
Cauchy-Riemann equations ([54]). Recall that the inhomogeneous system of Cauchy-Riemann

equations is the following:
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(inhCR) il =u, , for 1<j<n,

J

where u,,u,,...,u, are given C' — functions defined on an open subset Q of C". For n =1, this
system is degenerated to an equation with one unknown complex function f°, or equivalently to a
system of 2 real equations with unknowns the real functions Re f and Im f'. On the contrary,
when n2>2, the system (inhCR) is over-determinate, because in this case we have more
equations than unknowns. It is easily seen that if there exists a solution f € C*(Q) for (inh CR)

then the functions u,,u,,...,u, must necessarily satisfy the following integral conditions:

=) Bu, 91y gicn

9z, 9z,

It is obvious for n>2 these restrictive conditions may cause great differences
comparatively with the case when n=1. Thus, the problem of solving the inhomogeneous

Cauchy-Riemann equations (inh CR) can be formulated equivalently in the following form:

given an open set €2 in C" and

n JE—
u= Z“j dz,
Jj=l1

in Cio N (Q)={differential forms on Q , of type (0,1) and with

( 9 - equation)

coefficients u ; € C'(Q)}, find f e C*(Q) such that

9 f=u,

where 4 is the differential operator
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Notice that, with this terminology, the integral conditions (E) are equivalent to the equation
Su=0. Historically, the first who presented results in this direction was Oka in 1937 ([113]).

Later, in 1965, Hormander ([82]) used weight functions in order to modify L* —norms (as
Carleman had done for questions of partial differential equations) and presented a complete
collection of important facts, achieving to include in his theory some results that have already
appeared through the works of Garabedian, Spencer, Morrey, Ask, Kohn and Nirenberg. One of

the fundamental theorems of modern Complex Analysis, as is developed based on the ground of

partial differential equations, is that the equation 9 f=u has a solution f eC z‘z)q)(Q) for

every U e C;‘%’qﬂ) (Q) such that Ju=0 if and only if Q is a domain of holomorphy. Remind

that an open subset €2 of C" is called a domain of holomorphy if there is no part of the boundary
of € across which every function analytic in ) can be continued analytically. Thus, the
9 - equation is solved exclusively (at least for the C” case) into the open subsets of C” which are

the biggest domains of definition of analytic functions. In the complex plane every open set is a

domain of holomorphy. To see this, it is sufficient to see that for every point p in the boundary
3 Q of an open planar set €2, the analytic function (Z - p)f1 can not be extended analytically
past the point p. We can also prove that

dist(Ko@y, 9 Q)=dist(K, 9 Q),

for any Kcc Q; diSt(A,B) is the notation used for inf{dist(a,b):ac A,b €B}; KO(Q) is the

analytic hull of K defined by Ko ={z € Q:|f(z)|<sup|f| for all f €O (Q)}. So, the

analytical (and not only topological) generalization in C" of an open planar set is not simply an
open set, but a domain of holomorphy in C". The attempts and contributions for the
characterization of domains of holomorphy began from the first decade of the 20™ century. The
basic examples of domains which are not domains of holomorphy are H —shaped Hartogs

figures in C*. These are of the form
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H, ={(z,,2,)eC|z| <1+ g} U {(z1,2,)eCl—e<|z|<1+&and |z,| <1}.
Any complex function analytic on H , extends to the convex hull of A, using Cauchy’s Integral

Formula (CIR) . Hartogs analyzed this phenomenon. He considered a slight generalization of
this basic Hartogs figure, namely the Hartogs domains

H,={z,z,)eC*: z, €U:opensetin C and |zz|<e*<”(zl)}.

4

He showed that analytic functions on these generalized H’s extend beyond the boundary

precisely when the function ¢ fails to be a Hartogs function ([76]). Loosely speaking Hartogs
functions are the lattice generated by the functions c¢ 10g| f |, where ¢>0 and f is analytic. A

Hartogs function is the same as a subharmonic function ([77]) —but this was about 15 years before
subharmonic functions were invented— and, anyway, this equivalence was not proved until 1956
by Bremermann. This brought the topic of subharmonic functions into the theory of several
complex variables. In other words, Hartogs’ discovery showed that Hartogs domains in C* are

domains of holomorphy precisely when ¢ is a subharmonic (:Hartogs) function. Notice that ¢
can be interpreted as — log(dist, ), on the base U =U %0, where dist, denotes the distance

from a point to the boundary in the z, — direction. It took the genius of Oka to see how this could
be used for general domains. The Hartogs domains are, after all, rather special. Oka proved in
1942 that a general domain in C* is a domain of holomorphy if and only if the function
—log(dist) is subharmonic on each complex line. Oka called such functions pseudoconvex
([113]). This class of functions was simultaneously introduced by Lelong, who called them
plurisubharmonic ([93]). So to be more precise, an upper semicontinuous function whose
restriction to any complex line is subharmonic is said to be plurisubharmonic. The terminology of
Lelong has prevailed, so these functions are nowdays called plurisubharmonic. Lelong’s
motivation to introduce the plurisubharmonic functions is rooted in a similar way in the Hartogs

extension phenomenon. Levi, in 1910, observed that a smoothly bounded strongly convex domain
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in C* is a domain of holomorphy([95]). Such a domain has a defining function which is strongly
convex. The property of being a domain of holomorphy is invariant under bianalytic maps. The
bianalytic image of a strongly convex domain is, therefore, a domain of holomorphy. Carrying
over the convex defining function gives us a plurisubharmonic defining function. Lelong’s

motivation for introducing plurisubharmonic functions was that they could be used to describe in
this way a complex analytic version of convexity : a region QQ CC" is called plurisubharmonic
convex, if for every compact set Kc € its plurisubharmonic convex hull Kps(g)::
{ze Q:u(z)S sup u for any plurisubharmonic function u in €2} is relatively compact in
Q). For a plurisubharmonic convex region Q in C”, there holds.

Kps(g)= Ko(g), whenever Kc < Q2.
(Here, KO(Q) denotes, as above, the holomorphic (or analytic) hull of K, that is

Ko(g):: {zeQ: |f(z)| <sup g |f| for all fe0O (Q)}) The statement that a region Q in C" is

a domain of holomorphy involves a surrounding space C”, and thus, it is not clear whether it

describes an intrinsic property of €. It was a major achievement when in 1932, H. Cartan and

Thullen ([29]) discovered an intrinsic characterization of domains of holomorphy in terms of
convexity conditions with respect to the algebra of analytic functions. A region {2 —C" is called
holomorphically convex, if for every compact set K< < Q its holomorphic hull KO(Q) is
relatively compact in Q. According to H. Cartan—Thyllen’s theory, a region Q —C" is domain
of holomorphy if and only if Q is holomorphically convex. It follows that a plurisubharmonic
convex region in C" is a domain of holomorphy. To prove the converse we must first observe that
if there is a plurisubharmonic exhaustion function for the region € in C", then Q is
plurisubharmonic convex.. Remind that an open set 2 CC" is said to be pseudoconvex if there is
a continuous exhaustion plurisubharmonic function defined on Q. With this terminology, we can
reformulate the above observation: any pseudoconvex open set in C" is plurisubharmonic convex.

The identity of domains of holomorphy with pseudoconvex open sets was proved independently
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by Oka (1953), Norguet (1954) and Bremermann (1954) ([113], [110], [14]). We conclude that a
domain of holomorphy in C" is a plurisubharmonic convex region. Summarizing, the following
properties are equivalent for an open subset of C"

(@1). Q is a domain of holomorphy,

(ii). Q is pseudoconvex,

(iil).  Q is plurisubharmonic convex,

(iv).  Q is holomorphically convex,

).  —log(dist(-)) is plurisubharmonic on € .

In order to present a more complete discussion of pseudoconvexity, we intro-

duce a version of the classical “continuity principle” describing a geometrical very intuitive

analogue of linear convexity. If A —C is an open disk and u: A — Q) is a continuous map

which is analytic on A, we shall say that u(A) is an analytic disk S in Q and call the set u(9A)

the boundary 3 S of S. A region Q in C" is said to satisfy the continuity principle if for every
family {S, :a €1} of analytic disks in Q with
U.er9S.ccQ,
it follows that
U.eS.cc Q.

Regarding

(vi).  For every disk Sin Q one has dist (S, 9 Q)=dist (3 S, 9 Q),
it is obvious that (vi) implies that

(vil).  Q satisfies the continuity principle.

Further, (vii) = (v). Conversely, the maximum principle for subharmonic
functions shows that (v) implies (vi). Thus, properties (vi) and (vii) give other characterizations
for domains of holomorphy. Property (vi) exhibits once more the strong analogy between
pseudoconvexity and linear convexity : just observe that QQ —R* is convex if and only if for

every line segment L QQ one has
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dist(L, 3 Q)=disi( 3L, 9 Q).
It is natural to ask at this point if there is a «maximal» region E (Q) to which every f €0 (Q)
extends analytically. For example, the bidisk A%(0,1) clearly is such a maximal region for a

Hartogs figure /. The situation is analogous to the problem of finding a «maximal» domain of

definition for a single function like \/; (z € C-{0}), which can only be handled adequately by
introducing more abstract spaces, i.e., Riemann surfaces. Similarly, in several variables, one is led
to consider domains which have different layers spread over C":these are called Riemann
domains. One can then show that for every domain Q —C", there is a Riemann domain £ (Q),
called the envelop of holomorphy of Q, so that every f €O (£2) has an analytic extension to

E(Q) and E(Q) is «maximal» with respect to this property ([68],[108]). All these remarks
suggest that in order to deal with certain global questions it is necessary to extend function theory
from domains in C" to more abstract spaces. In a pioneering paper [136], published in 1951, K.
Stein discovered a class of abstract complex manifolds that enjoy complex analytic properties
similar to those of domains of holomorphy. The fundamental importance of these manifolds for
global complex analysis was soon recognized, and already in 1952 H. Cartan referred to them as
Stein manifolds ([30]). Among the axioms which define a Stein manifold X is the requirement

that X be holomorphically convex. The other axioms are more technical and they are trivially
satisfied for any open set €2 < C" or even for any (not necessarily closed) complex submanifold
of C".

Before continuing our discussion of the various fundamental concepts of «complex
convexity», let me mention an approximation theorem ([124]) extending Cartan—Thullen’s
results. As we have seen, a domain €2 in C" is a domain of holomorphy if and only if it is
holomorphically convex, that is if and only if Ko(g) c < Q for every Kc < Q. An open set
Q) c C" is called a Runge domain if the algebra of complex analytic polynomials P(C") is dense in

O (Q), when endowed with the Fréchet topology of compact convergence in (2. More generally,
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two open sets QQ < Q " are called a Runge pair if O (£2°) is dense in O ({2). Obviously, Q is
Runge if and only if (€2, C") is a Runge pair; moreover, it is classical that an open set QO cCisa
Runge domain if and only if Q is simply connected. The following statements are equivalent for
two domains of holomorphy €2 — €’ in C" and generalize Cartan—Thullen’s fundamental result
on holomorphic convexity:

(@). O(Q")isdensein O(L),i.e., (Q,0 ") is a Runge pair,

(b). Q is O (Q ")-convex, i.e., KO(Q')ﬁ Q c < Q for every compact set

Kcc Q.

By the time the ideas of Cartan and Oka became widely known in the early 1950s, they
had been reformulated by Cartan and Serre in the language of sheaves. During the 1950s and
early 1960s, these new methods and tools were used with great success by Cartan, Serre, Grauert
and Remmert and many others in building the foundation for the general theory of complex
spaces, i.e., the appropriate higher dimensional analogues of Riemann surfaces ([30], [58], [68],
[69], [70], [72]). In the late 1960s, the fusion of functional analysis and several complex variables
created a new branch of Mathematics: infinite dimensional analyticity. The systematic approach
for analytic continuation of analytic mappings in infinitely many variables and the original
sources of the major ideas and results in this direction are included into the excellent book of G.
Coeuré [35] (see also [2], [15], [16], [17], [34], [S1], [111], [123], [148] and the bibliography
given therein).

We end our brief summary of standard basic properties for analytic functions in open
sub-domains in C" by defining the very important class of strictly pseudoconvex sets. As it is
mentioned above, plurisubharmonic functions are a useful tool in multidimensional complex
analysis. The profound conception and orientation of their properties is been determined from the

analogy between different kinds of real convexity (for domains and functions) and corresponding

. . . 2 . . .
concepts in complex case. For a domain €2 cR" with C~ —boundary, convexity is characterized

by a differential condition in terms of a defining function r, as follows:
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if QQ is convex near p € 9 C, then the real Hessian LI; (r, (f) of r at

p is positive semi-definite on the real tangent space T pR (9 Q) 3 Q

(Conv,1)

at p, that is

R z 1927"

L =N 2 (p)& & =0

r8)= 2 g p)e 620,

R n "9

forallfz(fl,...,fn)eTp(8Q):{feR:drp(f):zlg):(p)fj:0}

and

if pe S Q and the real Hessian LI; (r, ¢ ) of ¥ at p is strictly positive

semi-definite on TpR (9 Q), that is if

(Comi2) 12 6)= 3~ (p)g, &, >0,

fmdx; 9xy

forall &= (fl e & ) € TPR (3 Q), then Q is strictly convex at p (,i.e.,

there is a convex neighbourhood U, of p such that Q A U, is convex).

In 1910, Levi discovered that domains of holomorphy with C* —boundary satisfy a

complex analogue of (Coan 1). More presisely, a domain € in C" with C 2 —Dboundary is said

. . . C . .
to be Levi pseudoconvex at p € § Q, if the complex Hessian L, (r, f) of the defining function
r at p is positive semi-definite on the complex tangent space T pc( 3 Q)=
TH(O Q)N iT (9 Q)to 9§ Q at p, thatis if

(LConv,.) Li (r,&)= iL(p) £.6,20,

=8z, 3z,

forall &=(&,&,,..,&,)e TC(8 Q). Q is said to be Levi pseudoconvex if the Levi condition
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(LConvC) holds at all points pe 3 Q. Q is said to be strictly Levi pseudoconvex at

pe9 Qif

(SLConv. ) L(r8)= YT (p)¢, & >0.

je1dz, 192
for all &= (é‘l ) Tpc( 9 Q)- {O }; if strict Levi condition (SLConvc) holds at all

points pe 3 Q, then Q is called strictly Levi pseudoconvex. The fundamental Levi’s results
were:

if Q is pseudovonvex in C" with C* — boundary, then Q) is Levi
(Conv,.1)
pseudoconvex ([89], [95]).

and

if Q is strictly Levi pseudoconvex, then every p € 3 Q has
(Conv,.2)
a neighborhood U , such that QY N U , is pseudoconvex ([96]).

The first natural question which may be now asked is whether in case of differentiable

C~ —boundaries, Levi pseudoconvexity coincides with pseudoconvexity. The answer is

affirmative, so
(viii). (for an open subset Q of C" with C* —boundary) Q is pseudoconvex if and only

if Q is Levi pseudoconvex .
A second problem that also arises is the description and generalization of strict Levi
pseudoconvexity, given that strict Levi pseudoconvexity can be viewed as the exact complex

translation of real strict convexity. (To justify this last assertion, we intimate that, for an open set

Q < C" withC? —boundary near p e 9 Q, Q is strictly Levi pseudoconvex at p if and only

if there is an analytic coordinate system w = W(Z) in a neighborhood of p, so that Q is strictly

convex with respect to the w —coordinates; in other words, strict Levi pseudoconvexity is

precisely the locally bianalytically invariant formulation of strict Euclidean convexity.) In order
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to face this second problem, it is important to observe that a function ¢ € C* (Q), defined on an

open subset Q of C" (not necessarily with C> —boundary) is plurisubharmonic if and only if

LS (¢, §) >0, for all ze Q and all £ €C". We shall say that the function ¢ € C” (Q) is strictly
plurisubharmonic if LS (,&£)>0, for all ze Q and all & € C"—{0}. A bounded domain Q in

C" is called strictly pseudoconvex, if there are a neighborhood Uy, of 3 Q and a strictly

plurisubharmonic function 7 € C*(U ,, ) such that Q NU,,={zeU,,,: r(z)< 0 }. Notice that
every bounded planar domain is strictly pseudoconvex and that we do not require that (dr)z #0

forze 9 Q, so that a strictly pseudoconvex domain does not necessarily have a C> —boundary.

It is easy to see that a strictly pseudoconvex domain is pseudoconvex, and that every bounded

subdomain of C" with C? —boundary is strictly Levi pseudoconvex if and only if it is strictly
pseudoconvex. It should also be mentionned that most of the well known important developments
is complex analysis concern the strictly pseudoconvex case : integral representation formulas
([80], [124]), Fefferman’s mapping theorem ([59]), the Chern-Moser invariants ([32]), the work

of Henkin and Skoda on zero sets on Nevanlinna functions ([79], [128]), sharp estimates for the

4 —problem, e. t. c.

In order to limit the size of this Paragraph, many important topics — for which
fortunately excellent references are available—had to be omitted. If, after reading the above
condensed, elementary and introductory discussion, you want to learn more about several
variables, we highly recommend the text books [13], [60], [69], [72], [82], [87] and [108].

After this brief exposition of some of the standard definitions and results on several
complex variables, we are ready to give a first approach to Padé-type approximation in many
dimensions. In what follows, our purpose is to define and study the convergence of Padé-type
approximants to a function which is analytic into an open polydisk centered at 0 . Our discussion

will follow the development adopted in [38], [39] and [40].
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3.1.2. Classical Padé and Padé-Type Approximants to Analytic

Functions of Several Complex Variables
Let

M, =(z", )
oV =\, ik, m,20,0<k, <m,

M, = (et

my ki )mIZO,OSkISml >

be n infinite triangular matrices with complex entries. For any fixed z = (z1 yeees 2, ) eC", with

4 (ﬂ(n) )“ (k, =01,2,...,m,),

m, .k,

Zl?ﬁ(ﬂ(l) )_1 (kI:O,l,...,ml), 4

my ,ky n

let
Q(ml,...,m,,)(‘x’ Z) = Q(ml ,...,m,,)(‘xl 2000 xn ’ Zl 3000 Zn )
be an analytic polynomial of degree at most (m1 yeens M, ) which interpolates

(1-xz)"..(1-x,z,)" inthe (m, + l)(mn + l)points

(ﬂ'(l) zm zl,...,zn),

my,ky 20t my, k0

M) (n) _ o B ( (n) )—1
Q(ml _____ mn)(ﬁml,kl seeos oy j 5 By yenes 2, )— (1 — ﬁml’klzl) A= T i Za)

5

Let Q be an open subset of C", containing 0. Let also A"(0,7) be the maximal open
polydisk of C" which is contained in € and centered at 0. Let also f be a function of O (Q)
with Taylor power series expansion around the origin

flzypnz, )= al(,lf)v zt.z) ((z1 v 2, )€ A(0, r)).
ViseesV, =0

.....
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It is clear that to f* there corresponds a C-linear functional distribution T, on P(C") determined
by

T (e x )=a) (v, =002, Ly, =0,12,..).

The following Theorem is a direct consequence of Cauchy’s Integral Formula (CIF )

The Proof is exactly similar to that of [37] or [38] except for the fact that here we need to

consider the Banach space

AN O,(pr s 2, ) =C(A"(0,(p1 e £, ) MO (A (0, (1 s 2,))

instead of the space O (A"(0,(p; " ,..., p," ) :={ f is analytic function in the neighborhood of

A"(0,(p, - £, ")) }. This consideration is an essential simplification and its consequences will

be appearing in the sequel.

Theorem 3.1.1. The distribution Tf is continuous. Further, for any p;<r; (] = 1,2,...,n), there

is a continuous extension of T into A(A"(0, (o, p;l))) .

Proof. Let p = (pl,...,pn), O<pj <r; (j = 1,2,...,n). If

kl kn
— Vi Y
p(xl""’xn)_ Z Zﬂvl ..... vnxl Xy
v;=0 v,=0

is an analytic polynomial in x = (xl,...,xn) of degree at most (kl,...,kn), then by Cauchy’s

Integral Formula there holds
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n
k k,
= Z Zﬁ (f)
VigeeoVy VeV,
vi=0  v,=0

= leznlﬁv v”(zﬂ.i)—n J' f(glﬂ’{:)délldéfn

......

v+l
v =0 v,=0 ‘(j‘=P/ (j=l n) 11 é/n

.....

< L(p) SUD | 1<yl 0, |f(xl yoees xnl sup|, p(x1 yeees X, ] ,

where L(p) is a constant depending only on p . The Hahn-Banach Theorem completes now the

Proof.

The most useful consequence of this Theorem is described in the following

Corollary 3.1.2. For every z = (Z1 yeees 2, ) e (O, r), the number

T

0-xz) " 0=x,2,)")
is well defined and equals f (Z)

Proof. If z= (z1 e 2, ) e (O, r), then there is an open polydisk

A"(O,p)=A"(O,(pl,...,pn))CCA"(O,F) such that ZEA"(O,,O). By Theorem 3.1.1, the

number

R

is well defined (: 7, acts on the variable (x1 ,...,xn) e (A (0; p7",..., P, ")) and z is taken as a
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parameter). The continuity of the C-linear form 7', implies now that

ViseesV,, =0
0
— Vi Vi Jo"1 Va
= ETf<x1 X )z1 z,
ViV, =0

Il
3
<
s
=
=
N
=
=
=<
N
~

Definition 3.1.3. The function

T, (Q(m1 _____ mn)(x,~)):C”— {(sl,...,sn):sj = (ﬂfn’:kj )_1 Jork,<m,and j= l,2,...,n} —C:

zZ > Tf(Q(ml ..... mn)(x’Z))

is called a Padé-type approximant to f. The analytic polynomial

with
ij+1 (xj)= H(xj - ”;j.),k. )

is the generating polynomial of this approximation (y €C— {O})
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Before entering into more results, let us show how to construct rational approximations to
f . Tt is well known that the interpolation polynomial of the function (l - X,z )_1 (1 -X,z, )_1

at the points (ﬂfnll) 30 ﬂfn")k - S- ) is given by

Q) Fires X2z, )= (1312, )l =, 2, )

Setting
W () ey (Zl reees Z )32 AR T, ([(_ l)n+1 le+1 (xl )"'Vm,,+l (‘xn)+
ey Zn: Vot (Zf1 )..ijilﬂ (Z;-il )ij_+1 (xj )Vmﬁl+1 (Z;L )..anﬂ (z;l )
j=1
- Vm1+1 (Zl_l )"anﬂ (Z;l )]
X |_()c1 —zfl )_1...(xn —2;1 )_IJ),
and

A
m,+1 -1 -1

-1 1) _m+l
V(ml+1 ..... m, +1) (Zl s 2y )'_Zl ez I/(m]+l ..... mn+1)(Zl seens 2y )a
it is easily verified that

T (O ) (13 X 2100 2,)

:W (my,...,m,) (Zl""’Zn) / v (my+1,...,m, +1) (Zl_l""’zr:l)'
Thus,
T, (Q(m1 ..... mn)(xl,...,xn,z1 - ))
is a rational function in (z1 yees zn) of type ((ml yeees MM, ), (m1 +1,..m, + l)), which means that it

has a numerator with degree in (z1 - ) at most (m1 yeees M, ) and a denominator with degree in

(z1 - ) at most . (m1 +1,...,m, + 1) Hence, we will make use of the notation
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(my,..m, /m, +1,...m, + l)f (2)00r2, )= T, (Q(m1 _____ mn)(xl,...,xn,zl,...,zn ))

A sequence {V(m1+1 ____ mnﬂ)(xl,...,xn):m1 =0,L2,...,---,m, =0,1,2,...} of generating
polynomials being given, we now want to study the convergence of the corresponding Padé-type
approximation sequence

{(ml,...,mn Im, +1,...m, + l)f (z): m; €N, for j =1,2,...,n}.

It is readily seen that

(mypeym, [ my +1,...ym, + l)f (z)

m ky m, k,
o0, ()Y {--[za;zzkn Oz H |
k, =0 v, =0

k=0 v, =0

where O',(nj_)k‘(Z) (j=1,2,...,n) is a rational function in z=(zl,...,zn) determined by

J>

Vi 1,m, 1) (x1 yeens X, ) Hence, our problem is equivalent to the following one: «If

N, (2)=le!, (2)) (j=12,..n)

m;20,0<k;<m;
are n infinite triangular matrices of complex functions, find the largest open subset of Q, into

which the (N1 yees N, ) — transform of the sequence of partial sums of any f € O(Q) around the

origin
m ky m, k,

U200 (z)Z[m(Zaﬁ;:ikn @), 2"z JJ 2=(z102,)€ €,
k=0 v =0 k,=0 v,=0

converges compactly to f »

Let
D, . (Q)={UcQfor any feO (Q), the (Nl,...,Nn)—tmnsform of the
~~~~~~~ "
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sequence of partial sums of f around 0, converges to f, compactly on U, if
M, —> 00, —> 0 J,
/4

and let

of functions of the 2n complex variables x,..., X, ,Z,,...,Z, , Which have the form
kl

m m, k,
()=S0, @)2(--{20;2,%<z>zxrlzrl...x:nzyj--}.
k=0 k, =0 v, =0

v, =0

,,,,,

,,,,,

converges compactly to (1 - X,z )71 ...(l—xnzn )71 Jifm, —o0,..,m, — 0. Set
"

g(a), Q)z {z = (z1 yoees zn)eC":( - - )e w,
V¢, eC-pr(Q),..v ¢, eC —prn(Q)}.
We will show that if € is an open polydisk in C” or QQ=C", then
\, Q).

.....

g(a), Q) cE

When n =1, our assertion follows directly from Eiermann’s theorem. As it is pointed out
in [55], the case n=1 can be viewed as an extension of Okada’s classical result ([114]) in a

generalized form which is due to Gawronski and Trautner ([62]): «if QQ #C,
M= (ﬂ-msk )mZ0,0SkSm > Tk € C,

and the sequence
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{i ﬂm’kzk:zv 1zeC, m= 0,1,2,...}
k=0 v=0

. . -1
converges compactly into an open set H containing 0 to (l - Z) , then

ﬂ Lec-0 CHCE-NI (O (2)).»

We begin with the following Proposition, which lists some of the main properties of the

set g(w,Q):

Proposition 3.1.4. ([37)) (a). g(,Q)c pr, (Q)x---x pr,(Q);
(b). g(aJ, Q) is an open subset of C",

(¢). w DC"x {0} if and only if

U

mn
limmi DDyl P Z O-r(nl,),k, (0) o kz_oo-r(nr:),k,, (0) = l 5

@. if {0 = A"(0,6”):i =0,1,2....} is a sequence of open polydisks such that
Q" Q" (i20)andc’= ] Q7 ,
then
(0.07)c gl0.0")< g0, 6°) (120) and glo. )=, el ).
Proof. (a). Let z=(z,..z,)e pr(Q)x- pr,(Q). Suppose z,eC-pr(Q). If
ze g(@,Q), then

( 1_1,...,4';1,21,...,2,,)6a),
whenever ¢, € C — pr,(Q),...¢, € C - pr, (Q).

Choosing ¢ ; =z, the convergence
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. -1 -1 -1 -1 -1
llmm,ll*)oo ..... mM*)oo q(ml ..... mn)(gl ""9§j—1’zj 9§j+17"'7é’n 3219'--32,,)

- (1 ¢z )_1 (1 - é’j__ll Z )_1 .(l - z]_.1 Z; )_1 .(1 - é’;l Z g )_1 (1 -¢z, )_1
leads to a contradiction.

(b). Setting
X, [(prj (Q))c ]4 ={(¢,,....C, ) eC: ¢'e C—pr,(Q), for j= 1,2,...,n},
one can write
g(a), Q)z {zeC" (é’, z) ew for{ e X?zl [(prj (Q))C ]_l} )
Fix z' =(z,,..,2,) € g(aJ, Q). Since w is an open set, for every
X @]
there are &,(¢)>0,...,&,(£)>0,8,(¢)>0....,5,(£)>0 with

¢2)emiflg ~¢ <e, ) and |z, -z)|<5,(¢)  (or j=12,0m).

Further, the set

X [(pr j (Q))c ]_1
is closed (because pr, (Q),..., pr, (Q) are open) and bounded (because for any j=1,2,...n the
projection pr, (Q) contains a neighborhood of 0). Thus,

X [(pr j (Q))C ]_1
is compact in C", and, consequently, we can choose

é:(l)’”_,é(N) c szl [(prj (Q))c ]‘1
such that
¢ |1 n i i
X5 [or, @) [ e U ol ele)).

Defining

HELLENIC ARMS CONTROL CENTER PUBLISHING
published on line as an e-book in 2007 277
www.armscontrol.info




PADE-TYPE APPROXIMATION TO FOURIER SERIES N.J.DARAS

ro= min{51 (5(") ): i= 1,2,...,N}, o, = min{é‘n (ﬁ(i) ): i= 1,2,...,N},
we obtain

(é’,z)ew

-1 . .
for every ¢ e X" [(prj (Q))C] and every z €C" with |z, —z,|<7},...,|] z, — z,|<7, . Thus,

Nz (r,))c g@.2),
and therefore g(m, Q) is open.
(c). It is an immediate consequence of the fact that
lim x,0)=01-x0)"..(1-x,0)".
(d). It is clear that
g(a),Q(i) )c g(a),Q(”l) )c glo,c ”), Vi=0,12,..
Thus, we have only to show that

U ;iog(a)’Q(i)): g(a),G n)

From the trivial inclusion g(@,Q® )< g(,C "), it follows that
glo,c” ) > U jiog(a),Q“) )
This means that for every i there exist
D eN(0,60),...c0 eA(0,59)
such that (£0) ()" 2,02, )2 . Obviously,
lim, ,, " =

for any j=1,2,...,n, and therefore, z ¢ g(a), c” ) Hence,

glonc”)=ULglo.0").

which ends the Proof of Proposition 3.1.4.
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Remarks 3.1.5. (a) Part (¢) of Proposition 3.1.4 can be regarded as a generalization of the

assumption 0 € H in Gawronski-Trautner’s Theorem.
(b). A question which may be asked is whether the domain g(a), Q) is contained in Q. The

following counterexample shows that the answer is, in general, negative. For, choose

Q:{(Zlﬂzz)e sz0<|21| <|Zz| <1}U A{(O,O)’(%’%D,

and

M= (ﬂmak )mZ0,0SkSm - (5'"/6 )mzo,kzo

where 0, is the Kronecker symbol. Let
o={(x,,x,,2,,2,)eC" (x,,x,,2,,2,) €Fym ),
with
FM,Mz U QGQM,M Qa
and

Quv={0 — C*the (MM)-transform of the sequence of partial sums of the geometric

series

S 2ty
converges to (1—z,) " (1= z,)™" compactly on Q, if m — 0},
Evidently, 0 €Q, 0 €Fyyybut
g0, Q)=A(01)z Q.

For our purposes, we shall need the following Lemma.

Lemma 3.1.6. Ler A" (0, r) =A" ((0,0,...,0) L1y s T, )) be an open polydisk in C", with center

at 0. If K is a compact subset of A" (O,I") , one can find another open polydisk
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A" (0, p)= A"((0,0,...,0), (0, Py seer ) such that

Kc < A"(0,p)c < A'(0,7).

[ba" (0, o) < k= (¢.¢0mng)ecfc =07 for j=1,2,...,n} x K.
If f €0 (A"(0,7)), then for all (m,,m,,....m,) there holds

ST (g (x.2)]

Sup zeK

-1 -1
< _ _ _
_L(f’p) sup (t,z)e[bA"(O;p)]’lxK ‘(l tl Zl) (1 tn Zn) q(ml ..... mn)(t’ Zj >
where L ( f, p) is a positive constant depending only on f and p .
Proof. Let z eK. By applying Corollary 3.1.2 and Cauchy’s Integral Formula for polydisks, we

obtain

1) =T g 2| =1 (- x12) "= 2,2, = g (5:2)

1-5,z) " .(l-s 2z )" - S,z
( 121) Zn) 9om,..., mn)( )dsl...dsn
(Sl _xl)"'(sn_xn)

= T_{(2m‘)_”. |

se[bA" (0;0)]”

— -\ -1 Sl_l"'Sn _ z -1 _ z -1
G | {Tf (1—xl.sl_l)...(l—xn.s,jl)}[(l fiE) (1= 52,)

se[bA" (0:0)]"!

- q(m, AAAAA m,) (Sa Z)]dSl ...dSn

Qay". [ st G s O =520 U= 5,20 = g (52 s d,

se[bA" (0;p)]”"

SL(f" p) sup (t,z)e[bA"(O;p)]’lxK ‘(1 - tl Zl )71 (1 - tn Zn )71 - q(m] ,...,m,,)(t’ ZX >
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which completes the Proof of the Lemma.

The following Theorem is a consequence of Lemma 3.1.6, but is more useful since the

choice of the compact K and of the polydisk A" (O, p) is eliminated.

Theorem 3.1.7. If Q=A"(0,7) or Q=C", then

.....

Proof. First, we assume that QQ=A" (O, r). It is sufficient to prove the following assertion:

for every 7' =(z,,...,Z,) € g(a), A (O, r)), there exists a closed polydisk

A'(z (1 et ) C g(a), A" (O,F)) satisfying r; #0V j=12,.,n and
limml =00y =0 Tf (q(m1 ..... m,,)(x’z))z f(Z)

uniformly on A" (2", (1, ,...,7,)), whenever f €0 (A" (0, r)).

We must distinguish two cases: z = 0 and z =0.

I case : z #0. Since g(a),A"(O,r)) is open (Proposition 3.1.4.(b)), one can find

r = ,..,r,) eRlsuch that A"(z",r") c g(a), A" (O, r)) By the definition of
g(a), A" (O, r)), the compact set
{(x,z)eC™xe X" [@ ~A(0,r, )]_land zeAN'(z',r')}
is contained in the open set w. Therefore, there exist &, >0,...,&, > 0 such that
{(x, Z)GCZ”: xe X', [6 - A'(0, r; )]_1 and ze N'(z',r’)} Co.

Since A"(z',r ) < g(a), A" (O, r)) c A (0, r) (Proposition 3.1.4.(a)), we obtain
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dist([u, € A'(0,7,): |u,|=max {r, — &,,sup —— |z 1].94'(0,7) )=¢,>0,

=(21502, )EN" (2" 317)

dist([u, € A'(0,r,):|u,

=max{r, —&,,sup

z=(zy 502, )EA" ) | Z”
Defining

pl =l/'l - 8'1"“5pn :rn - Sln’
we see that Lemma 3.1.6 can be applied to A" (0, p): A" ((0,0,...,0) S(P1s Prsees P, )) and the

compact set A”(z,7") and, thus our assertion follows.

2" case: z =0. Choose p=(p1,...,pn) such that A"(0, p) A"(O,r). By assumption, the

compact set {(x,O) eC”:xe A"(0, p)} is contained in the open set @ . Hence, {(x,z) ec™

xe AN"(0,p),ze A" (O,z’)} C w for a suitably chosen small polydisk A" (O,z’). It is obvious

that Lemma 3.1.6 can be applied to the polydisk A" (0, p) and its compact subset

A'(z',r ) =AN'(z",(r, ,..,7,)) where O<r1°<min{pl,rl},...,0<r;<min{pn,rn} and our

assertion is again proved.

We conclude that

glo.a"(0.r))<E, . ©@"(0.7)).

Next , suppose Q2 =C". As before, it is enough to show that

«for every z° =(zlo ,...,z:) € g((d,@") there is a closed polydisk

AN (z',(r ,nr,)) C g(a),C "), satisfying r; 20 Vj=1,..,n and

my, —® Tf (q(ml ~~~~~ mn)(x’ Z)): f(Z)

uniformly on A" (z" (7, ,...,7, ), whenever f €0 (C".
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Let 2 =(z,..z) eg(@,C") and let feO (C'). Choose a sequence
{A"(0,51):i=0,1,2....} a sequence of open polydisks in C" such that
A'(0,67)c (0,6 ana =" A7(0,6").
By Proposition 3.1.4.(d),
g(@,8"(0,6") ¢ g(@,47(0,6"") and g(w,c )= g(@,8"(0,5").
Thus, we can find 7, , such that z° € g(e, A"(0,5%))). Since g(e,A"(0,5))) is an open set

in C" (Proposition 3.1.4.(b)), there exist 7, #0,..., 7, # 0 with

N (0 r)) < g0, A (0,5))).

On the other hand f €O (C"). Hence f €O (A" (0,5 (i°))). Evidently, the first part of this

Theorem can be applied to the polydisk A" (0,5 (i°)) and the compact set A" (z°, (rlo,..., rno )) to

obtain

limml 0, >0 Tf (q(m,,...,m,,)(xﬁ Z)): f(Z)

uniformly on A" (z", (7 ,...,7, )). This implies that
glo.c")E,  ©©)

and Proof of the Theorem is complete.

Corollary 3.1.8. ([38]) Let f be a complex function analytic in an open polydisk A" (O, r). Let w

be the maximal open neighborhood of A" (0, (lfl_l yees rn_1 )) x A" (O, r) into which the series

0

i Vi Vi o Vn -
Z Xtz X"z, ijzj‘<l,]—l,2,...,n)

ViV, =0

converges compactly to (1 - X,z )_1 (1 -Xx,z, )_1

n
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If the generating polynomials

V(m1+1 ,,,,, m,,+1)(x1""’xn)= 71_[ Vo (xj)

of a Padé-type approximation satisfy

|4 X V X
(C,) M, e | 1— mlﬂ(_ll) 1= mnﬂ(:,l) ]
' “ Vs (z;) Vi, (z,)

compactly in @, then , forany f €0 (A" (0, r) ), there holds

1imml e, o (ml,...mn /m; +1,..,m, + l)f (z)zf(z)

compactly in A" (O, r) .

Proof. It suffices to see that condition (C n ) implies that

limmi I Wi q(m, ..... mn)(x’ Z ): (1 _xl Z )71(1 _xn Zn )71

and then apply Theorem 3.1.7.

Corollary 3.1.9.([38]) Let us consider the sequence of generating polynomials

m/+1

{V(m]+1 ..... anrl)(xl ,...,xn)z yH (xj - ﬁj) cyeC— {0},ﬁj eC,m; =0,,... (j = 1,...,n)}
j=l
If feo (A" (O, r)), then the corresponding sequence of Padé-type approximants to f
converges to [ compactly in some open subset of A" (0, r) , more precisely
limm,—)oo ,,,,, o (ml,...mn Im, +1,...,m, + l)f (z)z f(z)
uniformly on every compact subset of

iz:(zl,...,zn)e A" (O,r):‘z;.1 —/5'].‘ > SuP\g,\», , for j:1,2,...,n}.

C;l _ﬂj
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Corollary 3.1.10 ([38]) Let us consider the sequence of generating polynomials

¥t )= T 1T~ 8): - 10 B9 <

iy
m, =0,,...(1<i, j<n)}
Letalso f €0 (A"(0,7)). If
m,,, AU =y s =0k, —1 (i=12,...,n),
then
(mysm, Ly +1,0,m, +1) (2)= f(2)
compacily on

X" {zeCz ¢ L(p,) }ﬁAn(Oa”)’

where we have used the notations

ki —

L

(= - 7)

Jj=0

L(p,)={z eC: <p}. pi>0

and

k-1
=sup IS 1>r;

(é’i_l - 7;‘(]‘)* .

j=0
Proof. From Theorem 3.1.7, it follows that

1immﬁw ,,,,, e (ml,...mn /m+1,...,m, + l)f(z):f(z)
uniformly on every compact subset of

{z =(z,.r2, )€ A"(0,7):
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|
M
e [
§ ~.
+

+(=1)" l:no — whenever|§1| > 7y -}
[1G -8
i=0 j=0
)
k-1
H(éi_l _ﬂz(]))
{z (zl, ,Zn)e A”(O,r) 2,-: <1, fori=12,..,n whenever|§1|2rl,..., L2 n}
(Zz_l _ﬁi(j)
=0
k,»—1( L _ﬂ,(f))
{Zz(z1 ..... z )GA"(O r) f_ol <1, fori=12,...n whenever |§1|2r1,...,|§n|2 rn}:
1l -57)
=0 l
k-1
sup\g,\zr,. H(é:i_l - }/1( ))
z:(z1 ..... Zn)e A" (O,r): = (j=0 <1, fori=12,...,n
z' =Y
J=0 )
k-1 k-1
{z=(zl,...,zn)e A”(O,r): l_l(zl.‘1 —7/ *>sup5 H( j)*forizlﬂ,...,n}:
Jj=0 j=0

{z (zl, Wz )eA"(O r) 1eEﬂE),fori:l,2,...,n},
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this completes the Proof-

Corollary 3.1.11. ([38]) Assume that the generating polynomials have the form
Vin s1,m +1) xl, WX }/H Cm +1( ) ]/EC— {O}, m; =0,1,...,---,m, =0,1,...)

where

TCH, (xj)=cos(mj Arccosxj)= ] (xj —ﬂmj’l.)

i=0

are the Tchebycheff polynomials, and

B 2i+1
P, i=co [Z(m ) J

are the zeros of Tchebycheff’s polynomials (for i =0,1,.. m,).
If feO(A"(0,r)), then
o (e, T+ 1,m, +1) (2) = £(2)
compactly on
{z=(z,,z,) € A"(0,7):
(lz}l |z 1\) >sup ., Qf_;l 1+

Proof. By Theorem 3.1.7, we have

), for j= 12n}

mp,...m,/m +1,..,m, +1)f(z)= f(z)

My —>00,...,1M, —>0 (

lim
uniformly on every compact subset of

A'(0,7) N X" {zj eC:
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<1, §j‘2rj and m =1,2,...}

A (0,r) X" {zj eC:

< , for m; 20andi=1,2,...,n}.

7 —cos 2Hl )l —cod AL 4
’ 2(m, +1) ’ 2(m, +1)

The desired conclusion follows now from the relations

£ —cos 2i+1 .
’ 2(m, +1)

SUP|, 1.,

).

-1 -1
sup‘éj‘zq <sup‘§j‘2rjq5j 1‘+‘§j +1

and

< QZ;I —1‘ +‘ZJ_.1 + l‘)

z ' —cos 2i+l T
’ 2(m, +1)

A natural question which now arises is whether the inclusion

g@.Q)cE, | (©Q)

remains true into an arbitrary open set Q < C" (0 e Q, n>1). We shall give two examples
showing that the answer is, in general, negative ([39]).

Let Q be an open subset of C", 0 € €2, such that
(Q, A" (0,1)) is not a Runge pair and  pr, (Q) =A (0,1), for j=12,...,n.

We will show that there are n infinite triangular matrices N (z) =---=N, (z) satisfying
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go.Q)zE, | (0(Q)).

Let f €0 () and let

be the power series expansion of f*, around the origin. Choosing,

N(2)==N, (2)= (1), o

(0, is the Kronecker symbol), it is obvious that

g(aJ,Q)z Q.

If we assume that
then we directly get

Consequently, it holds

compactly on € and therefore, f is the limit of a sequence of analytic functions in A" (0,1).

Hence, (Q,A" (0,1)) is a Runge pair, which is in direct contrast with the imposed hypothesis. We
conclude that the assumption

go.Q)cE | (0(Q)

is wrong and thus, we have proved the

Proposition 3.1.12. Let Q) be an open subset of C"(0 € Q), such that
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pr(Q)=A(01) for j=12,..,n
and (Q,A” (0,1)) is not a Runge pair. Then, there are n infinite triangular matrices
N,(z)=---=N,(z). such that

g(0,Q)zE ,© (Q)).

Corollary 3.1.13. Let Q be the domain of C* defined by
Q=A(0,1)-{z,z,)eC 2, +z, =1}.
Then there are two infinite triangular matrices N, (z) and N, (z) with
2(0,Q) ZE, | (0©).
Proof. 1t suffices to show that €2 satisfies the presuppositions of Proposition 3.1.12. Obviously,

0€€Q and pr, (Q) = pr, (Q) =A (O,l). Further, the open set € is a domain of holomorphy. In
fact, it is enough to see that A’ (0,1) is a domain of holomorphy of C® and that
{(z1 ,2,)€Cz, +2, = 1} is a hypersurface in C°. In order to show that (Q, A" (0,1)) is not a

Runge pair, it is enough to find a set K< Q such that K N Qs not compact in Q. If we

O(A* (0;1)

K= (l,éemj:OSGSZﬁ ,
24

11 5 . 11 .
then (5,5) ek, (01 Since (E,E) € 3 Q, the Proof'is complete.

choose

Next, assume that  is the open subset of C* defined by
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Q:{(zl,zz) +22|<1}.

It is clear that 0 € €2 and that pr, (Q) = pr, (Q) =A (0,1). Moreover, it is easily verified that
(Q, A" (0,1)) is a Runge pair. We shall show that there are two infinite triangular matrices N, (Z)
and N 2(2) satisfying

g(w,Q) ZE | (0(Q).

The Proof'is due to Professor G. Coeuré (private communication).

Choose

1
f:Q—)GZ(Zl,Zz)I—) f(Zl,Zz):m EO(Q)

Evidently, f can be expressed, in a neighborhood of 0, as
Wlawz Z W +W2) :Z(Zc‘f ] Zcqulqwf >
V=0 v=0\_p=0 q,p=0

where ¢ =v — p and C} =(')). For any (wl,wz)e Q, set

(w,w,) chwl w? (k=0,1,2,...).

q,p=0

Let us study the difference
S (WI’WZ)_ Sy (Wl’wz)’ for (WHWZ)E Q.

Suppose (zl , Zz) is a point of ). We have
k S k k K+l _k
+l_p +1 +1 +1 +1 +1
Sia (ZI’ZZ) lezz ch+1+p 2 +2Cq+k+lzl zy +Cynz 2 -

In particular, when z, =—z, and k+1= 2k’ (i.e., even), the above difference becomes

Sk (Zl’zz)_ A (Zl’Zz)z Szk‘ (Zl T2 )_ Szk‘,l (Zl 3_21)
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2k -1 2k -1
:Zcp P 2k+p+zc ZZk+q+C2k k
2k‘+p 2k +q :
p=0

If we restrain our attention to z, > 0, then it is easily seen that

2k -1 2k 1

p 2k+p 2k’ +q 2k _4k
ZCM +ZC2k+Z >0 and Cz* >0.

Assuming that
lim, Sk(wl,wz): _ , whenever (wl,wz)e Q,
1- (w1 + wz)
we obtain
lim,_,, (Sk+1 (Wl > Wz)_ Sy (Wl W) )) =0 forany (W1 s Wy ) €Q.
Consequently,
lim, Clz" =0
Since

it follows, from Stirling’s Formula, that

L e/ o

lim, Cz" =lim, €’ 2% | =1lim .
—0 —0 ' k k—o '
(2k4)4 (“4”%)2 2k

fora z, > 0, suitably chosen near to 1. This shows that the assumption

lim, . S, (w,w,)=[1—(w +w,)]" whenever (w,,w,)eQ

is erroneous. Hence, the point (Z1 —Z ) € Q (with z, >0, z, near to 1) satisfies

Zl’ Z avl vz )

Vi,Va=
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Choosing

N, (Z) =N, (Z) = (5m,k )mZO,kZO

(5m’k is again the Krdonecker symbol), it is readily seen that

m, ky 0 i
(za;,,z,kz $ a2, >] S )z n)
ky=0 V,=0 0

Vi,Vy=!

lim, . .. ié’ml & i
k=0 =0
This implies that

(z-2) € | (0(Q)).
But, on the other hand, there holds

(Zl ’_Zl) € g(a),Q): Q,

and hence we have proved the following

Proposition 3.1.14. Let Q be the domain of C* defined by

Qz{(zl,zz)ecz:|zl|<l, Zl+22|<1}.

22|<1,

There are two infinite triangular matrices N, (z) and N, (z) Sfulfilling

g(@,Q) CE | (0(Q)).

We shall now modify the form of the set g(,2) and construct a new domain G(w,Q)

always contained in E (0 (©2)), under a general sufficient assumption.

N
Consider the family of sets

(E)7 ={C):0pen set in C", with 0 € Q and for any z € Q, there is a simply
connected polydomain D, = D" x...x D\ such that

{O,z}c D, cQ
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and
IDY) is C* —smooth (j =1,2,...,n)} .

It is clear that if Q is a polydomain of C", then 2 € (E) . For Q € (E); , we set

o, = {(x1 ,...,xn)eG": (x1 yeees X,y 2 ,...,zn)e a)} ,
and

G(co,Q) = {z € Q:thereis a D, such that [bDZ ]_1 C o, }
Here we have used the notation [sz ]_1 = {(t{ s t ! ): (t1 yeensl, ) ebD, }, where bD_ denotes the
Shilov boundary of the polydomain D, = D" x...x D™, that is its distinguished boundary

9DV x..x 3D,
Our next Theorem can be regarded as a modified form of Okada-Gawronski-Trautner’s

Theorem. Indeed, according to the classical Theorem for n =1, if Q is a domain of C (0 € QQ),
then the N(Z)—transform of the sequence of partial sums of any f €0 (Q), around 0,

converges to [, compactly on

g(a),Q):{zeQ:(%,zJea),foranyé’e@—Q}.

We shall show how to obtain compact convergence for the same as above sequence into the

domain

G(a),Q)z {ze Q:{%,zj ew, forany § € $D_ and some D_} .

Theorem 3.1.15. If Q e (E)”, then there holds G(w,Q) CE, . (0(Q))

In order to prove this Theorem, we shall use a Lemma, which is a direct consequence of

Cauchy’s Integral Formula on polydomains.
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Lemma 3.1.16. Let Q€ (E); and let we Q. Suppose the functions T— (x Z) are

.....

continuous in

[6D, I x{w}
(mj =0,1,2,... and j= l,2,...,n) , where D, is a polydomain in C". If f €O (Q), then there

holds

m, kn
)- St o z[ {za;z%kn <w>za5{,_>__,vnwrl...w:~]~-]‘
v,=0

V=0 k,=0

_M(f,DW) SUP, 1 ‘(l—tlw1 )71...(l—tnwn ) ~ G, mﬂ)(tl,...,tn,zl,...,znx
(mj =0,1,2,...and j = 1,2,...,11), where M(f,DW) is a constant which depends on f and

D, , but is independent of (m1 yeees M, )
Proof. It suffices to note that

1 f(&156,)

= 00)  ggdd,
f(W) (27[1)’! é’((,,..:[‘,,)ebDw (é/l - Wl)(é/n - Wn) é/ é/
1 f(élla 94 )
= d¢..d¢,
Qzi) . I oy A= WD =) S

and

my ky m, m,
S, <w>z[--[zo;z{k,, (W3, wrl...wy]--]
v,=0

1 m ky m, k, w V1 W Y
= - f(g“ asl)kl(w) O',(n”)k (w) (—lj ( ”J
(27i) c(a,...,jén)ebbw {’;) ’ VIZ% ’Z:‘) Z:‘) S &
&g de,de,

——= [ A ) ¢g, dged,
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Proof of Theorem 3.1.15. Let f €O (Q) and let z =(Z:,...,Z;)EG(CO,Q). From the
definition of G(@,Q), it follows that there is a D . with
[bDZD ]_1 co..
Consequently, the compact set
(3,000,521 50n 2, ) €€ (X 51ny X [bD ] }

is contained in the open set . Applying Lemma 3.1.16 for w =z, we obtain

f(f)—ioi,,lkl( )Z( (ZU (O)V:‘Z"zoagig”vn(Z;)VI,..(Z;)VHJ,..J‘

k=0 V=0

< M(f’Dz° ) SUP (1.t ). ‘(l —ha )_l"'(l ~1,Z, )_l ~m.... m”)(t,z")

for m; =0,1,2,... and j=12,...,n. Since G(a),Q) is open, there is a compact neighborhood

3

U- of z° satisfying

U: c G(a),Q) ND..

Clearly, for any z € U , one can choose D, equal to D .. Repetition of the Proof'shows that

1y ky m, k,
163, <z>z(---(zaf;:%kn <z>za5{,.>..,vnzr...z:nj---]‘

k=0 V=0

form; = 0,1,2,... and j=1,2,....n , and for any z = (zl, Wz )e U- . Hence,

ny

Z Z{ {Zom . ):Zjoaﬁj’)_,vnzp.,_Z;n]..}‘

zeU

1=0 V=0
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<sup__ [ M(f,DZD )SuP,=(t Ko ' (l—t1 z, )“...(l—tn z, )‘1 ~ G (2] 1.

,,,,,,,

By passing to the limit, as m, — oo,...,m, —> o, we see that
u
0 (SR ()0
. 1 n S v Vi —
hmm,h%oo ..... My, = Zo-m,,kI (Z)Z Z‘,O-m,,,k,1 (Z)zavl,...,v,,zll"'zn _f(Z)a
ey = V=0 k,=0 v,=0

uniformly on U , and the Theorem follows.

In particular, we have the

Corollary 3.1.17.(a). If Q = Q, x...xQ  is a polydomain of C", with 0 € Q, then
Gl@Q)cE, | (0(Q)).

(b). If Q is complete Reinhardt domain in C"(0 € QQ), then
G(w,Q)c Ey, x, (O(Q).

.....

The final aim of this Paragraph is the study of some general and sufficient
presuppositions for the global convergence of Padé-type approximants in Runge subdomains of
c".

Let Q be a bounded Runge domain in C"(0 € QQ), and f €O (Q). Since Q2 is bounded,

there are open polydisks
A'(0,d)=A"((0,0,...,0),(d, ....d,, ),

A"(0, )= A"((0,0,...,0),(p,.... o, ) and
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A" (0,7)= A"((0,0....,0),(71,...., 7, ),
such that
A'(0,d)c c A'(0,p) c c A" (0,r) c c Q
cc A ((0,0,...,0), (rl’l,...,rn’l )) ccA ((0,0,...,0),(,01’1,...,pn’1 ))
cc A'((0,0,...,.0)(d;"...ndt).

Observe that f €O (A"(0,r)). Following Theorem 3.1.1, the distribution T, is

continuous and linear into the Banach space A(A"(0,(p;,...,0,')). Since Q is a Runge
domain, there is a sequence
{f, €0 (A((0,0,...0)(d}" ;")) sk =0,1,2,...)
such that
lim,_, f, = f compactlyon Q.

Repetition of the Proof of Theorem 3.1.1 (with only formal change to substitute p with £, ) and
application of the Banach-Steinhauss Theorem imply that

lim, Tfk =T, .

Denote by @' the maximal open neighborhood of

A(0,7) x A((0,0,..,0), (o))

n

into which the series

0
Z X'z txz) (‘szj‘<l, for j=12,...,n)

converges compactly to (l - X,z )_1 (1 -X,z, )_1 .
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.....

,,,,,

point-wise in €.

Proof. For any z € Q, we have

.....

=f(zl,...,zn).

We can now investigate the global point-wise convergence of a sequence of Padé-type

approximants to an analytic function defined in a Runge domain:
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Theorem 3.1.19. ([40]) Suppose the generating polynomials

V(m1+1 ..... mn+l)(x19"‘5xn) 7HVm +1( )

Jj=1

of a Padé-type approximation satisfy

V V
(Cn) limmlaoo ..... m, —0 l_L()le) 1= mnﬂ(x—nl) =
’ Vm1+1 (Z1 ) an+1 (Zn )

compactly in @' and

Vm,+1(51) | =L V, a(s,) |
VoG] Vo)

for some dz(dl,...,dn) with 0<d; <r; (1 Jj< ) Then, for any f €0 (Q), it holds

(Bn) Sup(ml ..... m,) Sup‘s‘ d (j=1
(21 ..... z )eQ

lim my,...m, /m +1,.,m, +l) ( ) ( )

M) —>00,...,/M, —>0 (

whenever z € Q.

The Proof of Theorem 3.1.19 is an easy consequence of Corollary 3.1.8 and Theorem
3.1.18.

The cases n =1 and n =2 are of particular significance:

Corollary 3.1.20. (a). Let Q be a simply connected bounded planar region, containing 0 . If the

generating polynomials V. ( ) of a Padé-type approximation satisfy

m+1

() lim V() _

" Vm+1 (Zil)

compactly in @~ <C* and
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] <o

Vm+l (S)
Vm+1 (Z B )

(Bl ) sup meN (supp:dl ,2€Q) 1=

for some d(< r), then for any f €0 (L) it holds

lim, (m/m + l)f (z) = f(z) ,
whenever z € Q).
(b). Let Q be a bounded Runge domain of C°, containing the origin. If the generating
polynomials
Vi +tms1) (xl s Xy ) =7 Von (‘xl ) Vi1 (x2 )
of a Padé-type approximation fulfil

Vm1+l (Z;I)szﬂ (x,)+ Vm1+l ('xl)VmZH (Z;) - Vm2+l ('xl)VmZH (x,) ~0

(CZ ) hm —> -
o0, 0 -1 -1
e I/(ml,mz)(zl vZ; )

compactly in @~ <C* and

Voa @) || VoG]
le+1(z1_l)‘ Vm2+1(zz_l)‘

(21,2,)eQ

B
( 2) SUP iy myeN Sup\s1\=d;‘,|s2\=d;‘1

Sfor some (dl,dz),with d, <r and d,<r,, thenforany f €O (Q) there holds
limm1—>oo,m2—>oo(ml’m2 /ml +1’m2 +1)f(Z)= f(Z)’

whenever z € Q..
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3.2. Generalizations: The Analytic Case

3.2.1 The Bergman Kernel Function
Let Q) be any bounded domain in C”, and let h(z,;) eC (5) be a positive function in €.

We consider the Hilbert space Lf, (Q) , with inner product
(f-8),=[fghav,
Q

where dV is the volume element, and the integral is understood as an improper integral. The
space OLi (Q) of all analytic functions f € Li (Q) is a closed subspace of Li (Q) and hence is

itself a Hilbert space with finite norm

712" = [l .
Q
For each z € Q2 the evaluation map
7. :0L; (Q)—>C, defined by z‘z(f)z f(z)

is a bounded linear functional on OLi(Q). Therefore, by the Riesz Representation Theorem,

there is a unique element in OL,zl (Q), denoted by K, (-, Z) , such that
JE)=2.(1)= Kaluz), = [ 1) KalC2) Mg ) avi().

forall f €O L: (). The function
K,:QxQ —>C,

with K, (',Z)GO L (Q), is called the Bergman kernel function for C with respect to the

weight h or simply the Bergman kernel function. As it is easily seen, the Bergman kernel

function satisfies the following fundamental symmetry property:
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Ko (C,2)=Ko(2,¢) forall {,zeQ,

and hence K|, (é’ s Z) is conjugate analytic in z .
Further, it can be shown in the usual way that there are complete orthonormal systems in
O L; (€2). The Bergman kernel function K, has an interesting representation in terms of such a

system:

Theorem 3.2.1. For any orthonormal basis
1o, /=012,

Jor O L: (), one has the representation

Ko(¢.2)=Y 0, ), (z) (¢.2)eQxQ,

o0
j=0

with uniform convergence on compact subsets of QxQ. For a fixed z€Q, this series

converges in the Li —norm with respect to ¢ .

Proof. Given any orthonormal basis {(p )= 0,1,2,...} for O L7 (Q), the function K, has the

representation

o0

KQ(?’Z):Z<KQ("Z),¢1' o (Dj(é’) (é’,z)eQxQ.

=0
Since

<KQ('9Z)’¢j>h = <¢j9KQ("Z)>h = qu(Z) 5
the representation

0

KQ(é’aZ)Zz(Pj(é’)m (é’,z)eQxQ

Jj=0

follows. For the remaining statement, it is enough to prove uniform boundedness of the partial
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sums

on KxK, for an arbitrary compact K < < Q. Compact convergence then follows by a
normality argument.
First, notice that, forall ze Q andall f € O L} (Q), the Cauchy Estimates imply that

7)< c, [dist(z, 90)]" ],

where the constant C, depends only on the dimension 7 . Since

||KQ (~’Z]|ih) — ”1-”(2") = supﬂf(zj fe0 12(Q), f”gh) < l},

we infer that the Bergman kernel K, satisfies the estimate
||KQ (-, zm(zh) <C, [dist(z,SQ)]fn (z € Q).

Let now K be a compact subset of ). Then diSt(K, BQ) > 0, and, from the above estimate, it

follows that there is a constant o such that

|Ko (o) <o (z€K).

Since
ka2 - g\mgc,z),wf - z\m\ - g\%(zf,
we obtain
oS el o
201 HELLENIC ARMS CONTROL CENTER PUBLISHING
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So, by the Cauchy-Schwarz Inequality, one has

S Cllo <[ S ¢F | [Stel | o

for all z,¢{ € K, which completes the Proof of the Theorem.

Let us now give some examples of computation for the Bergman kernel function,

confining ourselves to complete circular domains Q and to the weight function 4 =1. Recall

that a domain Q — C" is said to be circular if ¢’z € Q whenever z € Q and @ is real. It is
convenient to take the set of monomials

VA" = A zlz k= (kyenk,) by = 01,2,V = 1,2,0m) |

n

as a complete orthonormal system, with

4 {yzkrdv(z)j 2

The completeness of this system follows from the fact that analytic functions can be expanded in

a Taylor series for the class of domains under consideration. The orthonormality follows from

A, ’s definition and from the fact that

[ ar(E)=0, for k=K.

Q

Theorem 3.2.2. The Bergman kernel function for the polydisk A" (O, r),r = (rl yeees V) ), is
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1 r?
K n s = V—_ s A Oa .
: (O’r)(g 2) r" 1;!(1;2 —é'vzv)z (5 Fenl ”))
Proof. For the polydisk A" (0, r), we get from the definition of A4, that
Akz = Ln ﬁﬂ

2k, +2
p v

v=l Iy,
Then, by Theorem 3.2.1 (here x, = ¢ VZ 72,
ek, +1

1 —k
KA"(o,r)(;’Z):Z”nH 2k, +2 'z

k v=l 1y,

1 9" ;
" O, .9,

2 2
P/ R

_ 9" 1
z"rlr? a9, ((1-x).(1-x,)
1 1

'l (1=x ). (1-x,)

forall (£,z)e A"(0,7)x A" (0,7).

Theorem 3.2.3. The Bergman kernel function for the ball B"(0,R), R >0, is
n! R* B n' R?
ST ALl S
forany & =(¢,,...C, )€ B"(0,R) and z =(z,,...,z, ) € B"(0,R), where we have used the

K =

B"(0,R)
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notation {{,z) for the usual inner product of C"

=307

Proof. For the ball B” (0, R), the definition of A4, gives us that

A2 = (k, +...+k, +n)
L kl!"'kn!”nRz(k‘+"'+kn+n) .

So, by Theorem 3.2.1 (here x = R_ZZQ’VZ =R7{,z),

v=l

<),

1 Z(k1+...+kn+n)! it

KB"(O,R)(é”Z) = "R k) k | R 20k,

| _
_ 1 Z(m+l) ;(m+n) Z m! é’kzk
z"R" 1, R™ fkom Ky L

= 1 n iddnn (xm)

7[ m=0

X
el
”Rdxlx

"R (1—x)”+1
n! R*
7Z'n(R2 —<§,Z>)n+1
n' R?
7R -¢z = 0,2,)

for all (é’ R Z) e B" (O, R)x B" (O,R), which completes the Proof of the Theorem.
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3.2.2. Haar’s condition

Up to this point we have been considering the approximation of functions by

ordinary analytic polynomials. In the one complex variable case, analytic polynomials of degree
< m are of course simply linear combinations of the functions l,x,xz,...,xm . It is natural to
generalize the concept of a polynomial to include linear combinations of other prescribed
complex functions, say

80812825 58m -
We shall always assume that such functions are continuous on some fixed compact metric space

S, containing at least (m + 1) points. Their linear combinations

m
Yeg
=0

will be termed generalized polynomials over S (ci es )

Definition 3.2.4. Let X, be the (m + l)—dimensional complex vector space of generalized

m+1

polynomials over S, which is generated by the continuous functions g,,2,8,5--»g,, - We say

that X, satisfies the Haar condition over S , if every function in X ,,,, has at most m roots in

m+1

S'; the functional discret set

120:812 8200280 )

is sometimes termed a Tchebycheff system.

A systematic investigation of Haar’s condition is incorporated in [31] and [92]. His
deeper advantage is connected with the characterization of best approximations. In order to limit

the Section size, this important topic —for which fortunately excellent references are
available — had to be omitted. Here, we will only discuss the “interpolatory” interpretation of this

important condition.
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Theorem 3.2.5. The following are equivalent:

(a). X, satisfies the Haar condition over S .

(b). {go 38158 } is a Tchebycheff system.

©). If {so 38y 5 S, } is any finite collection of pair-wise distinct points in S, then

g,(s,) &(s,) - g,(5,)

det[gj(sk)]k’j:go(sl) g,(s) .. gm(sl)¢

go(Sm) gl(Sm) o gm(sm)
). If {SO , 8 ,...,sm} is any finite collection of pair-wise distinct points in S and if y,,Y,,..., Y

m

are arbitrary complex numbers, then there exists only one generalized polynomial

8 =ici g inX,,

i=0

such that g(sk): Vi for k=012,..,m.

Proof. 1t is clear that (a) < (b). To complete the Proof, we shall show that (d) <> (c) and (a)
< (c).
First, assume (d) We see that the interpolation condition

g(s D=y, (for k= 0,1,2,...,m) is equivalent to the existence of a unique solution for the

linear system
zcjgj(sk): Vi (0 <k< m)
=0

This is equivalent to the non-vanishing of the determinant
detlgj(sk): yka,j :

Hence, (d) < (c). Next, a necessary and sufficient condition for (a) is that any generalized

polynomial
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gzzcigi eXmH’

=0
with (m + 1) distinct roots

8058 seeesS

m?°

is identically equal to the zero function. In other words, a necessary and sufficient condition for

(a) is that the homogeneous linear system (with respect to ¢, ’s)

chgj (Sk ) = Vi (k = 0,1,2,...,m) ,
=0
has the unique solution (Co 5Cp5ees €y ) = (0,0,...,0). But, this is equivalent to

detl.gj(sk):ykjk,j 70,

that is (@) < (c), which ends the Proof of the Theorem.

It is important to know if Haar’s condition is satisfied over an arbitrary compact subset S
of C". The following result, due to Mairhuber and to Sieklucki, shows that only a very small class

of compact sets in C" can be considered:

Theorem 3.2.6. ([92]) Let S be a compact subset of C". A necessary and sufficient condition for
the existence of a (m + l) — dimensional complex vector space X, ., satisfying Haar’s condition

over S is the homeomorphic identity of S with a closed subset of the unit planar circle.
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3.2.3. Generalized Padé-type Approximants to Analytic L>-Functions

From the point of view of integral representations, a major difference between the case of
one complex variable and the general case is due to the fact that in one variable there is
essentially only one kernel function —the Cauchy kernel (l—xz)_1 — , while in several
variables one has great freedom to modify, by a basically algebraic procedure, the original
potential theoretic kernels.

In particular, for complex dimension one, Padé and Padé-type approximation theory is
based on the choice of polynomials interpolating the Cauchy kernel function in x . For dimension
higher than one, we were faced with the problem to develop a coordinate Padé or Padé-type

approximation method in polydisks, by interpolating the Cauchy kernel function

(l - X,z )71...(1 -X,z, )71 .

But, Section 3.1 showed that approximation results, obtained by this method, lead to
extremely complicated computations if # > 3. So, in the following, we will suggest a totally
different method that applies to all bounded domains €2 (and not only on polydisks) of C" and
can be considered as a natural extension of Brezinski’ s ideas from one to several variables.

The general idea is to replace the Cauchy kernel with the Bergman kernel function
K, (z, x) .

Even though the details of this method involve a general theoretical machinery, it should be
stressed that its applications to the approximation of functions are readily accessible. But, on the
other hand, the treatment of this method while having certain advantages is limited to the special
class of analytic functions on Q which are in L’ (Q) Further, the computation of the Bergman
kernel function for arbitrary domains is a difficult problem. However, at least for the case of

bounded circular complete domains in C", we are able to obtain concrete results.
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Let © be a bounded domain in C". As in Paragraph 3.2.1, we will denote by OL? (Q) the

collection of all functions f* analytic in ) with finite norm:

b

o= firar]

where dV is the volume element; OL> (Q) is a Hilbert space with inner product

(frey=[regav (f.geor’@) ).

Let f eOL’ (Q) and suppose
0,(z): j=012,.
is a complete orthonormal system in OL’ (Q) If aﬁ.f Jare the Fourier coefficients of f with

respect to this system, then the series

fE)=Ya"p,() (-0

J=0

converges in the norm ||||2 Let us introduce the linear functional

Tf :d(C")—>C". (Pj(Z) = Tf(¢j(z)):: aj(f)’

where ®@(C")is the complex vector space generated by all finite complex combinations of ¢_j ’S.

If

px)=Y.B.0,(x)ed(C"),

v=0
then
‘Tf (p(x)l = Tf(Zﬁv P (x)j =287, (¢v (xq
v=0 v=0
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5 ()
;ﬂvav

(oo

It follows, from Holder's Inequality, that

>5[ fo.av

[rpar

oW, %
| [ || (| -1,

and therefore, by the Hahn-Banach Theorem, T ; extends to a linear continuous functional on the

Hilbert space L’ (Q) of all complex-valued functions g in Q, with inner product

(g.hy=[ghdV (g,hel’(Q)).

Obviously, for any z € Q fixed, the Bergman kernel function K, (z,x) belongs to L’ (Q) and

thus, one can define the number
T, (Kq(zx),

where the extended functional 7', acts on the variable x . Furthermore, by continuity, there holds

1= $0,6)- 31,0 T, (-7, S0, 090,
and, by Theorem 3.2.1,. | |
f(2)=T,(Kq(zx)).
Thus, computing f(z) for a fixed value of z is nothing else than computing T, (K, (z,x)).
It arises in practice that only a few Fourier coefficients a\/) of f €OL*(Q) are known

or that the Fourier series expansion of f (with respect to the basis {(oj (Z): J :0,1,2,...})

converges too slowly.
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Thus, the function K|, (Z,x) has to be replaced by a simpler expression. To do so, for

any m =0,1,2,..., consider the (m + l)— dimensional complex vector spaceam, , generated by

the Tchebycheff system

)

Denoting by Z, ., the analytic set

m+1

U 0<j<m Ker(p_j

¢ Kergo_j is the kernel of (0_] ), suppose that @ , satisfies the Haar condition into a finite set of

m+1

pair-wise distinct points

Mm+1={7r V4 ...,ﬂm,m}CQ.

m,0°%m,1°

This means that every function in @, has at most m roots in M, ;. One can, for example,

m+1

choose the set M, ., so that

gm(x,Z):chn)(Z)ng X)e (Dm+]’

such that
gm(”m,k,2)= K, (Z,ﬂ'm’k) forany k <m,

or explicitly

icﬁ”’)(z)(pji;rm’k )= K, (Z,ﬂ'm’k) (for k=0,1,...,m).

=0
Note that to find cﬁ’”) (z) it is enough to solve the above linear system: a necessary and sufficient

condition for the existence of a unique solution is that the determinant
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is different from zero. This condition is equivalent to the Haar condition for Emﬂ into the set

M, ., . Obviously, for any z € Q, there holds

(m)
e (2)

¢0 (ﬂ-m,m ) ¢1 (ﬂ.m,m ) ¢j—1 ﬂm,m KQ (Z’ ﬂ.m,m ) ¢j+1 (ﬂm,m ) ¢m (ﬂ.m,m

¢0(77m,0) (Dl(ﬂ.m,o) e P\
(”o(ﬂm,l) ¢1(77m,1) e P\

or alternatively,

K (z,;z ) K (z,;r ) K (Z,/Z' ) n K (Z,/Z' )
E. (m)(z)_ Q m,0 Q m,1 Q mm) _ Q m,k
&) P I 0 Y e 2 0,7,
(j=0,1,..n)

In the formula
f(2)=T,(Kqy(z.x))

let us now replace K, (z, x) by g,, (x, z) to obtain
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It is easily seen that each c;.m) (z) belongs to OL* (Q) and therefore, for each j, there are Fourier

constants S‘(,j ) such that

It follows that

(g, (x.2)) = iasf 35U g, (2) = z(z> a;fjmz) (zeQ).

We may now give the following

Definition 3.2.7. Any function (GPT A/ m) ; (z) , defined by

(GPTA/m)f( )=T gm x,z)) ia /) 7
j=0

is called a generalized Padé-type approximant to f € OL* (Q), with generating system
Mm+l = {ﬂ'm,O s 7z.m,1 bR ﬂm,m }
If

0.7,
fs9;) =0 f =01,..,m,
Z () Z q)_(_) or every v m

then T, (gm (x,z)) is said to be a Padé-type approximant to [ , with generating system M,

()

and is noted by
(PTA/m),(z).
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According to our preceding discussion, we have the following.

Theorem 3.2.8.(a). 4 generalized Padé-type approximant (GPTA / m) ; (z) to

=Y a9, ()eor (@), g,(z)e0r (@)
v=0
is an analytic function in L* (Q)

(b). Any Padé-type approximant (PTA/ m)f (Z) to f eoL? (Q) is a generalized Padé-type

approximant.

©.If

with respect to the orthonormal basis {(p‘, (Z)Z V= 0,1,2,...}, then there holds

B =a") | for anyv=012,..m.

Proof. 1t is clear that any Padé-type approximant to f €OL’ (Q) is a generalized Padé-type
approximant, and any generalized Padé-type approximant to an f €OL> (Q) belongs to

oL? (Q) Now observe that, for any v > 0, we have
a"=[fo,dV =(f.0.)
Q

and
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o0 =S =3 e @ Elara) [ [ o )

Q

(Ko (o7, )s0,) (f0,) -

Il
DM:

Since

<KQ (~’ ﬂ-m,k )’ qu ()> = gov ﬂ-m,k H

we see that, forany y =0,1,2,...,m , it holds

which ends the Proof.

This Theorem justifies the notation “Padé-type approximant” to f € OL> (Q)

Notice that to compute a generalized Padé-type approximant (GPT Al m) ; (z) to f (z) it
suffices to know only the Fourier coefficients
(r) () ()

ay’,a’,....a,

of f and the functions

e (2)e" (2)nc(2).

resulting from the solution of the equations (E 0 ), (E | ),...., (E ” ) , respectively.
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Evidently, the free choice of the orthonormal basis
0,(z): j=012,.
and the generating system
Sm+l = {ﬂ.m,Oﬁﬂ-m,l"“’ﬂ-m,m}
may lead to a better approximation of the function. The best choice is a general and difficult
question which is not studied herein. However, Theorem 3.2.9 gives a first theoretical account
concerning the error of the approximation. Another problem connected with the choice of the
basis and the generating system is the convergence of generalized Padé-type approximants. Some

attempts to solve this problem will be presented below in Theorem 3.2.11 and its Corollaries

3.2.12and 3.2.13.

Theorem 3.2.9.(a). The error of a generalized Padé-type approximation is
T, (g (x.2))- 29 AN ~{f:0.) |0.(2).
M DR o
(b). The error of a Padé-type approximation equals

Tf(gm(x,z)) Z [Z(f ?; >Z—(—) foo, ]%( )

v=m+l| j=0
Proof. Let f €O0L*(Q).
(). If
(GPTA/m)f (z)

is a generalized Padé-type approximant to f (Z), then
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B). If
(PTA/m),(z)

is a Padé-type approximant to f° (z), then, by Theorem 3.2.8.(c), we have
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(PTarm), () 1G)- 3 {iv ”5e ( )

We can now immediately obtain bounds for the errors:

Corollary 3.2.10. Let K € < Q and let f € OL*(Q).

(a). If (GPT Al m) P (z) is a generalized Padé-type approximant to f (Z), then there is a positive
constant O'(K) , depending only on the compact set K , such that

e(soteo| |-

(b). If (PTA/ m)f (Z) is a Padé-type approximant to f (Z), then there is a positive constant

3

Sup zeK

(GPTA/m), (2)- (2] < o (K)| /], {Z

v=0

r(K), depending only on the compact set K , such that

Sup zeK

v=m+l

(PTA/m), (=) 1(2) < () |1, {z

= ’[sz(zmkq
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Proof. By Theorem 3.2.9, we have

(GPTAIm),(2)~ f(2)| = sup.

Sup zeK

=sup_« i i@ﬁ(/@)i LAGLE —<f,<0v>] cov(Z){

= sup. i{f f [i(ﬂ_fi dd il —¢_v] dV} 9, (2)1

since

.| S, <z>|2}; ~sw.. {30, @W};  sup. (Ko 2 = o(K).

v=0

This completes the Proof of (a). The Proof of (b) is exactly similar.

Let us now turn to the convergence problem of a generalized Padé-type approximation

sequence. From Corollary 3.2.10, it follows directly the

Theorem 3.2.11. Suppose Q is a bounded domain in C' and f eOL*(Q). Let

{(p ; (Z): Jj= 0,1,2,...} be any orthonormal basis in OL*(Q). Let also

M = (ﬂ-m,k )mZ0,0SkSm
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be an infinite triangular matrix, with elements 7, , in

Q= vejen Ker?))

such that for any m >0
ﬁm,k ¢7z-m,k' (lf‘ k;ék')

and the determinant

is different from zero. If

2

0
llmm—)oo Z
v=0

=0 @; (ﬂ-m,k )

]Z:(pj [Zml 0.\ )J -9,

2
then the corresponding generalized Padé-type approximation sequence to | (z)
(GPTAIm),(2):m =0,12,..|

converges to f (Z) compactly in Q.

Corollary 3.2.12. Suppose Q is a bounded domain in C" and f(z)eOL*(Q) Let
{(/7 ; (z): j= 0,1,2,...} be any orthonormal basis for OL* (Q) and let M be an infinite triangular

matrix

M= (ﬂm,k )mzo,OSkSm

with elements
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(70s) €Q=( oeyen Kerd,)
such that

forany m =0 there holds =, # 7, . (if k # k')
and

Jl7z.m,0 b ﬂ-m,l ""ﬂ.m,m }

satisfies the Haar condition with respect to the Tchebycheff system
{(Poa(/’1a---¢7m, }

If(pJEC( )forall] 0, and

YVe>03N = N(z;"):supx65 goi(x)—i(oj ij(_;

Vm>N and i > 0, then the corresponding generalized Padé-type approximant sequence to
/(2)

(GPTAIm),(2):m=0,12,..|

converges to [ (Z) compactly in ).

It is well known that if € is a bounded complete circular domain in C", then the

monomials

with
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A = ( [ ‘xk‘de(x)J_z,

is a complete orthonormal system for OL? (Q) By Corollary 3.2.12, we immediately get the

following:

Corollary 3.2.13. Suppose Q is a bounded complete circular domain in C" and
M= {7Z'm’k =T omrhky -M; 20, 0K, < mj}}
is a sequence with elements
i € Q—{(xl,...,xn)e(}”: XX, = 0},
such that
forany m 2 0:7,  #x, . (ifk#k"),
and each finite subsequence

Vot = T omrtioiy 10Sm, M, 0<k, <m, (j=12,.,n)f

satisfies the Haar property with respect to the Tchebycheff system

If

j i

oY Y

|j|slm] |#]<|m|

lim  _ sup .. {A,. sup_s

then, for any f €OL* (Q), the corresponding generalized Padé-type approximant sequence to
/2)
{(GPTA/m)f (z)= T, (g,(x,z):meN" }

converges to f (z) compactly in Q (as |m| — ).
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As we have seen, for any f €OL’ (Q), the functional T, extends continuously and

linearly onto the whole Hilbert space L* (Q) It follows, from the Riesz Representation Theorem,

that there exists a unique function F € L’ (Q), such that

T,(g)=[g(¢)F(Z)av(¢)

forall g eL’ (Q) If, in particular, g = ¢_v , then
T,(0.)= o, Fav=al=[r o, av,
) Q

and therefore

”f—F]go_V dV =0, forany v =0,1,2,...
Q

This means that the function ( f —F) is orthogonal to every ¢, . By completeness of the basis
{(pv V= 0,1,2,...}, we conclude that

f=F.

Hence

T(g)=[grdv (ger’ ().

Theorem 3.2.18. Every generalized Padé-type approximant (GPTA/ m)f (z) to f eOL? (Q),

has the following integral representation

(GPTA/m),(z) = j f(x) D, (x,z)dV(x),

where the kernel D, (x, Z) equals
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Dm(x,z):ZKQ(z,ﬂm,k)i A .

k=0 =0 Pi\TC o i

Proof. 1t holds
(GPTAIm), ()=, (&, (+.2)

~ [2,(6:2) £ V() = [ X () 9,0 £ () AV ()

Q /=0

160 303 Kelemes) gy

By Theorem 3.2.8.(a), T, (gm (x,-)) eor’ (Q), for any f €OL’ (Q) It follows, from the

Closed Graph Theorem, that the integral linear operator

T, (g, (x):00*(Q) » 0oL’ (Q): f(z) > T, (g, (x.2) = [ f(x) D, (x,2)dV (x)

is continuous. We call this operator the generalized Padé-type operator for OL* (Q) Its adjoint is

the operator

T, (g, (x)*:0L*(Q) > 0L’ (Q): h(z) > T, (g, (x,2)}* = [ h(x) D, (x,2) dV (x).

In fact, to 7, (gm (x,-)) there corresponds a unique operator
T, (g, (x) 0L (@)~ 0L (@)
satisfying

7, (g 2)- BV () = T, (g, (x2). 12 = (1.7, (e, (e

Q
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=[/@7,(g,(x2)*av ()
Q
forall £ €OL*(Q) and h € OL*(Q). Since, by Fubini's Theorem:

[T (&, (x2)hE@ av() =] [/(x)D,(x2) dV(x) h(z)dr(z)

_ I (%) j h(z)D,, (x,z) dV(z) | dV(x)

=[f@|[mx)D, (z,x) dV(x) |dV(2),

it is immediately verified that

T, (g, (x.2)F = [ h(x) D, (z,) dV (x).

The continuity of the generalized Padé-type operator leads to some interesting

convergence results.

Theorem 3.2.19. If the sequence {fv EOLZ(Q): V=O,1,2,...} converges to the function
f €0L*(Q) in the L’ —norm, then
lim,, (GPTA/m), (z)=(GPTA/m),(z)

V—>0

inthe L* —norm.

Corollary 3.2.20. If the series of functions

VZ:;CV f,(z) (¢, ec, feorr(Q))
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converges to f (Z) 0)% (Q) in the L* —norm, then

(GPTAIm), ()= ¢, (GPTAIm), (2)

v=0

in the L* —norm.

In Section 3.4, we will see that all the above ideas extend to the context of a functional
Hilbert space. This theoretical approach will permit us to establish more general results having

useful applications to several concrete examples.

3.3. The Continuous Case
3.3.1. Markov’s Inequalities

Our next purpose is to introduce generalized Padé-type approximation to continuous
functions of several complex variables. Our theoretical method leads to aspects and results

extending the analytic L* — case and will require the validity of Markov’s inequalities into a

compact subset of C". We therefore will discuss these first.

The classical Markov’s inequalities in the closed unit cube 1" = [— 1,1 ] " R" permit us
to estimate the growth of successive derivatives of a polynomial by its degree and uniform norm
inI":

HDGQHIH < (deg Q)z‘a‘ ||Q||I , forany Q € P(R") and any a = (a1 s ) eN".
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Here P(R") is the space of all complex polynomials in R”, ||Q||I equals the sup _, |Q(x)| and

|al=a, +...+a,. The extension of these inequalities to more general families of compact

subsets of R" inspired many people. A very detailed survey of this work can be founded in [5],

[116],[117], [118] and [127].

In what follows, we will consider R" as a subspace of C". We shall say that the Markov

inequality (Mw) is true on a compact subset E of C", if there exists an integer m > 1 such that
M,) “D”QHE <M (deg Q)m‘”‘ : ||Q||E for any Q € P (C") and any a eN".

The constant M , depends on a, but is independent of Q. Surely, the most far-reaching program

to extend Markov’s inequality (MOO) to more general families of compact sets has been

initialized by Pawlucki and Plésniak in [116]. The single most important contribution to come

from this program is the discovery of the central role of uniformly polynomially cuspidal subsets
of R" or C". A subset £ of K" (K=R or C) is uniformly polynomially cuspidal, if there exist
positive constants M and m , and a positive integer d such that for each point x € E , one may

choose a polynomial map /_:K—K" of degree at most d satisfying the following conditions:

h([0,1])c E and A (0)=x,
and
dist(h (1),C"—=E)>M t"  forall xe E and all t €[0,1].
One can verify that every bounded convex with non void interior or bounded Lipschitz domain in
K" is uniformly polynomially cuspidal ([5]) Further, an application of Hironaka’s
Rectilinearization Theorem and Lojasiewicz’s Inequality shows that every bounded subanalytic

subset £ of C” such that the interior int £ of E is dense in E, is uniformly polynomially

cuspidal. Following [116], we have the
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Theorem 3.3.1. The Markov inequality (Mw) is true into every uniformly polynomially cuspidal

compact subset of K".

We also give a general definition for a measure on a compact set to satisfy an

L? —Markov inequality: given a compact set £ in K" and a positive measure g on E, we say

that (E , y) satisfies the Markov inequality (M p) for some p >0, if for any a eN" there are a

constant M = M ( P, a) and two positive integers »,m > 1, such that

M) ool <teeo flor ) soram 0t

If E fulfills (Mw ), then a sufficient condition for (E , ,u) to satisfy (M p) is

lol, < M(deg0); ( ﬂQIPdﬂJp Jor any 0 <P,

In [147], Zeriahi proved that if £ is a uniformly polynomially cuspidal compact subset of C" and

if p is the Lebesgue measure on £, then for any p > 0 there holds

1
m p
ol =i aeeo) Jio" | (o crien.
E
where M, N and m are positive constants independent of Q and p .

One consequence of Markov's property (Mz) for (E,,u) is that the vector space
c” (E ), of all complex-valued functions defined on a compact set £ in R" and admitting a

C” extension on R”, has a Schauder basis consisting of orthogonal polynomials. To see this, let

v :N— N" be a bijection with |v(])| < |v(] + 1)| forany j.If (E,y) satisfies (Mz), the set

HELLENIC ARMS CONTROL CENTER PUBLISHING
published on line as an e-book in 2007
www.armscontrol.info

331




PADE-TYPE APPROXIMATION TO FOURIER SERIES N.J.DARAS

V) j=012,..)
is linearly independent in L (E s y) and, by the

Hilbert — Schmidt Orthogonalization Process, one can construct a family

{goj D= 0,1,2,...}
of orthonormal polynomials in L? (E, ,u), such that deg(pj =|v( ]l , J=0,1,2,... For each

uel’ (E , ,u), we then write

¢, (u):= Iugo_jd,u (j=012,..).

E
Theorem 3.3.2.([147]). If u € C*(E), then there holds

u(z) = icj (u) ®; (z) uniformly on E .

=0

Proof. Let u e C* (E ) By the orthonormality of the system {go )= 0,1,2,...}, we get

cj(u)z I(u—Q) ¢_jd,u Jj=012,..,

E

for any QO eP(C") with degQ <degg, . Application of Cauchy —Schwarz's inequality

shows that

2 2
|c(u)|§inf{||u—Q||E =U|u—Q| d,uJ :Q eP(C") and degQ < degp; }

or alternatively

=

lo; () < (u(E))" inf{|u-0],: O eP(C)and degQ <degp, } (j=0.2...).

Put
p,(u)=inf{u—0|,: 0P and degQ <degop, }.
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Since, by Jackson’s Theorem, the sequence {p ; (u) j= 0,1,2,...} is rapidly decreasing, the above
estimate implies that

lim,_ (deggoj )k ‘cj (u)‘ =0 forany k£ > 0 .
As (E , y) satisfies Markov’s inequality (M2 ), we also have
HD“(oj“E < (M deg(pj)m”‘“‘ forany j > 0 and a eN",

which in particular gives

‘cj(uj “goj.HESM|cj(u)\deg(pjm (j>0).

1

Since (deg ®; ) ~ j", the Proof of the Theorem is achieved.

The results we have obtained generalize to the context of a compact set E —R”"

satisfying (MOO ):
[peg|, <M, (deg0)" |0,  (QeP(C)and aeN).

To prove this, we may first define a nuclear Fréchet topology on P(R"), by introducing

seminorms g, , on C” (E):

qK,ﬂ(u)=inf {sup,,., D"gHK :geC”R", g/E=u}
(ue C°°(E), K c cR", A eN).

By (Mw), if QeP(C") and Q/E =0, then Q=0. From Jackson's Theorem, it
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therefore follows that for any g € C”* (R"), such that g/ E =0, the restriction of any derivative
of g to E is equal to 0. This means that the injective restriction C* (E ) ->C (E ) is

continuous. Since C” (E ) is a nuclear Fréchet space, Mityagin’s Theorem ([106]) guarantees the

existence of a Hilbert space H such that the injections

C*(E)> H - C(E)

are continuous.

Let now again v: N—N", be a bijection With|v(jl < |v(j+ll for any j. Since E

satisfies (MOO), the set {xv(j ). j= 0,1,2,...} is linearly independent in H and hence, by the

Hilbert-Schmidt Orthogonalization Process, one can find a system

W, j=012, . jcH,
consisting of orthonormal polynomials with deg i ;= |v( J X forany ;.

From the continuity of the applications C* (E ) —->H->C (E ), we then get the existence

of a constant B > 0 such that Hl// ; HE < B forall j.It follows, from (Mw ), that

”D”l//jHE <BM, (degl//j)mla‘ forany j > 0 and a € N".

On the other hand, the continuity of the injection C~ (E ) — H shows that if Ec 1",
where I is a closed interval of R, then there exists a constant 4 and an integer A > 1 such that

|| u"H <A qlu(u), whenever u € C*(E).

Let #f bea C”extension of a u € C*(E) on R". For each j, let Q , be the polynomial

of P(R"), with degree degQ; < j and fulfilling
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p, 1" )=inf { |i7-0|.:QePC)and degQ, < }=|i-0], .

If (-/-), is anotation for the inner product of A with corresponding norm ||

cj(u):= /'y ;)y (j=012,.).

yo W put

By the orthogonality property of the basis {l// iz O}, we can write ¢, (u) =u-0, 'v,;)y
for any j > 1.1t follows from Cauchy-Schwarz’s Inequality that

p-0). (i=0).

‘cj (u)‘ < Asup,.,
Set now
P, =0, and P =0 -0, (jz1).
Since # € C”~ (I" ), the sequence {p (1) = 0,1,2,...} is rapidly decreasing. This implies

that for any a € N" there holds

and consequently,
‘ ”(ﬁ—le‘lv < Z ‘
k=j+1

But, from Markov’s inequality (Moo ) in the cube 1", we have

DaPk“I"'

Pk”l” < Cakz‘a‘q i _anl” +|| u_Qk—lnl”)'

DB <Ck*

Thus,

pe(ii-0,), <2m, Sk p, L (@),

k=j+1

The rapid decrease of the sequence {pj( u,l"). j= 0,1,2,...} now guarantees that, for any
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N > 0, the supremum
AN = Sup kZO,‘a‘S/I {2Ma kz‘a‘+N+2 pk*l (1’75 In )}
is a finite number. We infer that
(degy, )" |e, () < (4 43k (20N >0),
k=s;
1
and hence lim;_ (deg y/j)N lc,(w) =0 (N > O) .Since (deg v, )~ j2, we have thus

proved the following

Theorem 3.3.3.([147]) If E satisfies Markov's inequality (MoO ), then there holds

u(z) = icj (u) v, (z), uniformly on E

J=0

whenever u e C*(E).

3.3.2. Generalized Padé-type Approximants to Continuous Functions
Let E be a compact subset of R”, (E # J).Suppose x4 is a positive measure on E and
assume that (E,,u) satisfies Markov’s inequality (Mz). In this Paragraph, we will define

generalized Padé-type approximants to continuous functions on £ .

As we have already seen , there is a family {goj 1J =O,1,2,...} of orthonormal

polynomials in L* (E,y), such that ‘deg (Dj‘ < ‘deg P (j = 0,1,2,...) and every u e C” (E)

can be written as
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where

and where the series converges uniformly on £ .

In the sequel, we shall assume that {(oj i :0,1,...}‘ is a self-summable family in
I’ (E,,u), ie. for any ze€ E , the sequence {goj (Z)m j= 0,1,2,...} is summable in
L’ (E , y). This means that for every z € E and every positive number & there exists a finite set
Jy=J, (Z,g) of indices such that

: VA
du| <e,

Yoo,

jeJ

Yoo,

jeJ

-]

E E

whenever J is a finite set of indices disjoint from J, ([74]). By this summability condition, for

each z € E fixed, the function

K& (z):E—>cUfol:xs KO(zx) =Y 0 ()o, (1)

J=0
is in LZ(E,/J).

Letnow u e C” (E ) We introduce the linear functional
() . 1 ~. (1) —
" :®(C )—)C.(pjixi|—> T* i(pjix”.— cj(u),

where @(C") is the complex vector space which is spanned by all finite complex combinations

of gp_j’s. If
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=Y 80,0 coE),

then
6| - 1 (300 - S 7 )
VV()(— E“("_Vdﬂ

From Hélder’s Inequality, it follows that

1
2 )2 2 2
) [ | =l ol
E E
and, by the Hahn— Banach Theorem,T u(” Jextends to a linear continuous functional on
I’ (E , ,u). For each z € E fixed, one can therefore define the number

T(”)(K,(f)(z, x)),

u

where T u(” ) acts on the variable x € E . Furthermore, by continuity, we get
)=S0l e)= ST Gl )7 0,6l ) - 72 o)
Jj=0 j=0 j=0

Thus, computing u(z) for a fixed value of z € E is nothing else than computing

1 (K (z.x).

If only a few Fourier coefficients ¢ ; (u) of u are known, then the function K éz)(z,x)

has to be replaced by a simpler expression.

For any m =0,1,2,..., let us consider the (m + 1)— dimensional complex vector space
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m+1

spanned by the Tchebycheff system {;0,51,...(/)_%}, and suppose that F,, satisfies the Haar

condition into a finite set of pair-wise distinct points
M, = {ﬂ'm,o,ﬂ'm’l,...ﬂ'm’m}c E,

with

M, . m{ U Ker(p_]} = (: Kergo_jis the zero set of (o_j).

0<j<m

In other words, suppose that every function in /) ,, has at most m roots in M By Theorem

m+l *

3.2.5, for any z € E there is a unique

g, (r.2)=3 0" (e, (x) e F,.,
=0
satisfying
Zn (x,ﬁm’k): iaﬁm)(u)qoj i )= KéZ)(z, TC ), forany k <m.
j=0

A necessary and sufficient condition for the existence of a unique solution

(O'(()'")(z), O'l(m)(z),..., O',(n'")(z)) for this linear system is that the determinant

(00 (ﬂ.m,o ) ¢1 (ﬂ.m,O ) ¢m (ﬂ-m,O )

detlp (.., )| = olz.) olz,) . o,

is different from zero. Notice that this condition is equivalent to the Haar condition for F ,, into

the set M Then, for any j =0,1,2,...,m, there holds

m+l *
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0) ore-3 Xl

Definition 3.3.4. Let E —cC" and let y be a positive measure of E , such that (E , ,u) satisfies

(Mz). Assume that {(oj j= 0,1,2,...} is a self - summable family, consisting of orthonormal

(j=0,12,..,). For m > 0, choose a

polynomials in L*(E, u) such that ‘deg (pj‘ < ‘deg P

finite set of pair-wise distinct points

M, = {ﬂ'm,o,ﬂ'm,l,...ﬂ'm)m}c E —( U Ker(p_j}

0<j<m

so that

and for any k < m the series

converges uniformly on E . Any function (GPTA/ m) (2), defined by
T, (x): E >€ 2> (GPTA/m)," (2) = T"(g,, (x,2))

is called a generalized Padé-type approximant to u € C* (E ) , with generating system M , |

If, moreover, for every v =0,1,2,...,m, there holds

L = (01/ a k
, =< =0,
e e

(ev

then the function T u(” )(gm (x,-)) is said to be a Padé-type approximant to u, with generating

system M | .It is denoted by (PTA/m),(f)(Z).

m+1
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This Definition seems be similar to the corresponding one, listed in Paragraph 3.2.3. The
only difference consists in the supplementary presupposition about uniform convergence for the

series
o0
Z(Dj(')¢j Tk )-
j=0

This presupposition guarantees that K 1(52) (-, T ) eC” (E ) (k =0,1,2,..., m) , and therefore that

the generalized Padé-type approximant T, (u )(gm (',x)) is a continuous function on £ : in fact, by

u

(Q ; ), there holds

(g, (x.2))=T,

Il
ﬂ
S
VR
Ngh
\q/«

2
—_

N
~
3

=

Ne——

Notice that the computation of a generalized Padé-type approximant T (u )(gm (x,z))

u

tou e C” (E ) requires only the knowledge of the Fourier coefficients

colu)e,(@)rc, (u)

of u and of the functions
o (2)0" () ol (2),

resulting from the equations (Qo ), (Q1 ),..., (Qm) respectively.

Under the assumptions of Definition 3.3.4, we also have a direct analogous to Theorem

3.2.8, which justifies the notation Padé-type approximant :

Theorem 3.3.5. If
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> ".(2)

is the Fourier expansion of a Padé-type approximant (PT Al m)ff)(z) = 7;(” ) (gm (x, Z)) to

o0

u(z)=2 ¢, (u) p,(z)e C”(E),

v=0
with respect to the family {(p‘, V= 0,1,2,...}, then
ﬂv(’"'”) =c, (u), forevery v =0,1,2,....,m.

Proof. Since K ,(52)(3 ok ) eC” (E ) for any k < m, each function

is continuous on F ( j= 0,1,2,...,m). From Corollary 3.3.3, it follows that there are Fourier

coefficients ¢ ™) such that
G;m) (z) = Z t) ”")(ov (z), uniformly on E.
v=0

We can therefore write

j=0 J=0 v=0 v=0\Jj

This implies that

and alternatively,
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e =3 (o160 e 0
=i(IiKE(7—)2(’ K2 mn) S aute) j i
=0\ Ek=0 P\, i e
S5 UK (¢ o )l )j ).

Now observe that the series

im;)m

converges to the continuous function K (é’ T, k) uniformly on E . Hence, by orthonormality,

we obtain

J-KJ(EZ)(;’”m,k)m:u(é,):¢v(”m,k) (kSm).

Thus, from the definition of Padé-type approximants, it follows that for any v =0,1,2,...,m there
holds

3
S
R

S

N
o
%‘

(w)=c,(u).

j +
- 6

which completes the Proof of the Theorem.

'ME

Il
f=1

pr =33 e
j=0 k=0 k=0

v)

ﬂ

~.
LY

Repetition of the Proof of Theorem 3.2.9, with only formal changes, gives the error

formulas.

Theorem 3.3.6. The error of a generalized Padé-type approximation equals

s|s
SHIKS]
=

e r) =)= 3| e )27_) 0.():

(1#)
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the error of a Padé-type approximation is

1 (2 -ule)= 3| Ye, (22 0, )

Let us give a different approach to the generalized Padé-type approximation on a compact
subset £ of R" (E # &) satisfying Markov's property (Mz) with respect to some positive

measure /.

For ueC” (E ) , the corresponding linear functional T (s

u

extends continuously and
linearly onto the Hilbert space L’ (E,,u). By Riez’s Representation Theorem, there exists a

unique element U € L* (E , y) satisfying

Tu(”)(g): J.g Ed,u, whenever g € L (E,,u).
E

For g = (o_v , we therefore obtain

79(p, )= [0, Udu=c,(u)=[ugp, du
E

E

and, consequently

J.[u —E]qo_vd,u =0, forany v=0,1,2,...
E

Theorem 3.3.7. If the family {(pv Y =O,1,2,...}is complete in L* (E,,u) (that is, the only
element w e L (E , ,u) , verifying

[weo, du foral v=012,..,
E
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is the zero function), then

@. T(g)= Ig udu (g e L(E, p)):;
E

(b). each generalized Padé-type approximant T, (gm (x,z)) to ueC DO(E ) has the integral

representation

7")(g,,(x.2))= [ulx) D,, (x,2) dulx),

where D, (x, Z) is the kernel

The Proof of this Theorem is exactly similar to that of Theorem 3.2.18. Since

KE("”m,k): K, (”m,ka') € LZ(E,,u),

we also have

[ x) D, (x,) dulx) € L*(E, u)

E

forany g € L (E R ,u). From the Closed Graph Theorem, it follows that the integral operator

Sy (B, u) > L(E, p):: Ig p(x)

is continuous. Further, by Fubini’s Theorem, its adjoint operator is given by

% 12(E, u) - L (E.p) : g() > 51 *(g) = [ ¢(x) D, (1.x) duulx)

Definition 3.3.8. The restriction of S/(lm) to C” (E ) is called a generalized Padé-type operator
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for C” (E ) . We denote

TW(g, (x,):= S;(,’”) /C*(E).

The continuity property for this operator

Tg,,(x)): C*(E) — C*(E) :ul)r> T,")(g,, (x)) = [ulx:) D,, (x) duulx)

E

is a useful tool for the study of convergence and in this connection we give the:

Theorem 3.3.9. [f the sequence
{u, ec™(E):v=012,.]
converges to u € C* (E ) with respect to the L’ —norm of I’ (E , ,u), then

lirnvﬁoo Tu(#) (gm (x")) = Tu(lu) (gm (x"))

v

in I*(E, u1).

Corollary 3.3.10. If the series of functions
iav u,(z) (o, eCu, eC” (E))
v=0

converges to u € C” (E ) with respect to the L* — norm of L’ (E , ,u), then

(g, (x,-»:gav (g, (x.)

in I*(E, 1)*

Until now, we have supposed that the compact set E satisfies Markov's inequality (Mz)
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with respect to some positive measure g on E. We will now turn to the case where E fulfills
Markov’s property (Mw). As it is pointed out in Paragraph 3.3.1(Theorem 3.3.3), if E ccR”"

verifies (Moo), then there is a Hilbert space (H (1) H) and an orthonormal system

{y, :‘deg g//j‘ < ‘deg Wia|»J=012,..} in H,such that the injections
C*(E)— (H,(-/,) and (H,{-/), )= C(E)

are continuous and each function u € C” (E ) has the Fourier expansion

u(z)=2 ¢, )y, (2),
j=0
where ¢, (u) =(u/y ;) , and where the series converges uniformly on E'.
As for the (M ) )— case, we shall assume that

W, j=012,.

is a self - summable family in (H, 1)y ), i.e. for any z € E, the sequence

v G, =012}

is summable in (H )y ), in the sense that for every z € £ and every & >0 there exists a

finite set J, = J, (z, 8) of indices with

>, @y,

jeJ

(X, S, @ <

jeJ jeJ
whenever J is a finite set of indices disjoint from J,. This summability condition implies that

for each z € E fixed, the function
Kg"’)(z,-):E —>C: x> Kéw)(z,x)?it//j(z)t//jixi

belongs to H . Note that, by construction C” (E ) cHcC (E ) and hence, for any z € F fixed,
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K (z:)e C7(E):;

further, by the continuity of the injective map (H ROD» ) —>C” (E ) , the series

converges uniformly on £ to Kg’o)(z,').

Let now u be a C” — continuous complex-valued function defined on the compact set

E satisfying (Mw ) As for the (M2 )— case, we define the linear functional:

T,:¥(@C") —>G:l//j(x)|—> Tu(y/j(x)):z cj(u),

where W(C") is the complex subspace of H , which is generated by all finite combinations of

y,’s If

D WARCETCO

then

1) = 7 3.0

AT, (Wi

W cv(u)1= S B Wiy,
=l Y B =kl D).

From Schwarz’s Inequality, it follows that

7,(p)< e, 7l

and, by the Hahn — Banach Theorem, T, extends to a continuous linear functional on H . For

each z € E fixed, one can therefore define the number
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7, (K1),

where T acts on the variable x € £ . Moreover, by continuity, we have

)= e,y ()= 27, v 2)

=0

n{ S 6, 0] - o o).

j=0

~

Thus, computing u(z) for a fixed value of z is nothing else than computing

7, (k5 (.x)
If only a few Fourier coefficients c; (u) of u are known or if the Fourier series expansion of u
(with respect to the family {l// = 0,1,2,...}) converges too slowly, then the function
K }(;o)(z,x)has to be replaced by a simpler expression.

To do so, for any m = 0,1,2,... consider the (m + l)— dimensional complex vector space

Y it , generated by the Tchebycheff system

Vol |

and assume that Y »+1 satisfies the Haar condition into a finite set of pair-wise distinct points

M, . = {ﬁm’o,ﬂm’l,...ﬂm’m}c E —( U Kerl//_j}

0<j<m

that is
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This is equivalent to the fact that for any z € E there is a unique element
=Y "2y, (x),
j=0
in Yo fulfilling

( TomkoZ ) io' Wj‘ﬂ ’k.’=KJ(E°°)(Z,72'm,k),forkSm.
Jj=0
Evidently, for j =0,1,2,...,m, we have

() 2)=)y ~L 2l

k=0 l//j m,k

Kiemi)

Definition 3.3.11. Any continuous function (GPT Al m)u (Z), defined by
T,(g,(x): E—>CzT,(g,(xz2)) icl (m)
Jj=0

is called a generalized Padé-type approximant to u € C* (E ) with generating system M
If, for each v =0,1,2,...,m

7,

‘S

m m V 0,

(fiv)
then T, (gm (x,-)) is said to be a Padé-type approximant to u 1t is denoted by

(PTA/m),(z).

Obviously, the computation of a generalized Padé-type approximant 7 (gm (x,z))

requires only the knowledge of the Fourier coefficients

cou)e (@)....c, (u)
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and of the functions

resulting from (P0 ), (R ),..., (Pm ), respectively.

Theorem 3.3.12. If

S pr iy (2)

v=0

is the Fourier expansion of a Padé-type approximant (PT Al m)u (z)= T, (gm (x, Z)) to

0

u(z)=3 e, )y, () C*(E).

v=0

then for any v =0,1,2,...,m, there holds
£ =, ),

Proof: Since K g”)(~, TC ok ) € H for any k < m, each function

belongs to the Hilbert space H, for every j=0,1,2,...,m. It follows that there are Fourier

coefficients

such that

uniformly on £ . We can therefore write
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This implies that

or alternatively that

Now, since, for any k < m,

(or since the series

converges uniformly on E'), observe that the family

{t//j () y/jizzm,k ): j= 0,1,2...,}

is summable in H with sum
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Kéw)(-,ﬂm,k)e H c C(E).

By orthonormality, we obtain

N AN I R AT

=Zolljj(7z'm,k )(Wj v,y
J=
=l//vi72'm’k ) (k<m).

Hence, from the definition of the Padé-type approximant 7, (gm (x, z) , it follows that

for any v =0,1,2,...,m . This ends the Proof.

A criterion for the efficiency of generalized Padé-type approximants to continuous
functions on FE is, of course, their convergence behavior. This problem, connected with the best

choices of the orthonormal system
{y/j Dj= 0,1,2,...}

and of the generating system

Mm+1 = {ﬂm,O s ﬂ-m,l ""ﬂ-m,m }’
will be discussed below in Theorem 3.3.14.
First, let us study the errors. It is easily verified that

Theorem 3.3.13 (a). The error of a generalized Padé-type approximation to
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equals

7, (g (w2)-ule)= 3 | Yo @)y e, () |, (o), z<E.

We can immediately obtain an answer to the convergence problem of a generalized Padé-

type approximation sequence.

Theorem 3.3.14. Let E be a compact subset of R" satisfying Markov’s inequality (MOO) and let
ueC”(E).
Consider the intermediate Hilbert space (H )y ), for which the natural
injections C” (E ) >H->C (E ) are continuous. Suppose
W, j=012,.

is a self-summable family consisting of orthonormal polynomials in H , such that
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(j=012,.)

‘deg l//j‘ < ‘deg Wi

and assume that the function

K¥(,):E—>Czis KV

)

=0

is continuous on E . Let also
M = (ﬂ-m,k )mZ0,0SkSm

be an infinite triangular matrix, with elements 7, , € Q, such that for any m >0

i i (fk2k"), 7, , é( UKert//_jJ (k<m)and det[ mk ] # 0.

0<j<m
), |
o || .m = l//v Tmk
. , B :0’

then, the corresponding generalized Padé-type approximation sequence to u(z)

{Tu (g, (x,z)) im= 0,1,2,...}

converges to u(Z) uniformly on E .

if

Proof. By Theorem 3.3.9 and by Cauchy — Schwarz's Inequality , we have

Z<u/[;wjzjf(%—%]>f, %(Z){
o) }

Jj= 0 l//j [ )
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1

Sup..., {i v, (Z)Iz}2 =sup..; {il/f (). (2 }; —sup_, (KD (. 2)f = o(E),

v=0 v=0

and o(E) < oo, the Proof'is complete.

3.4 The Hilbert Space Case

3.4.1. Generalized Padé-type Approximation in Functional Hilbert

Spaces

It is readily seen that the methods of Paragraph 3.3.2 can be extended into a functional
Hilbert space.

Let H # {O}be any Hilbert space, consisting of functions defined into an arbitrary
topological space X and with values into the extended complex plane C=Cu {oo} Let (-/+),
be the inner product of H and let ”-”Hbe the corresponding norm. Assume that H is enough
large, so that if /€ H then 7 eH.

Suppose

N=ie, :j=12,.]
is a countable complete orthonormal set in /{ . The condition that N is complete means that the

only vector orthogonal to every e, is the zero vector. Then, each u € H has the Fourier

expansion
u(x)= Z(u/ej>H ej(z) (ze X).
Jj=0
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Further, assume that N is a self-summable tfamily in H , in the sense that for any z € X the

sequence

le,(2)e,:j=012..}

is summable in A ([74]). This summability condition guarantees that, for each z € X fixed, the

function

KX(Z,-):X—>C:xHKX(Z,x):iej(z)m

=0

belongs to H .

First, consider any element u € H and introduce the linear functional 7, :E —C

defined by
T, (e_jix}):z (ule;)y,

where E is the complex vector subspace of H which is generated by all finite complex

combinations of e ; s, If

p(x):iﬂvev X EE,
v=0

then
7 (ple)) = T(zﬁﬂj S g wie,
=Y Boe)u| =l B,

and by Schwarz' Inequality ,

17, (G} <l [, -
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It follows, from the Hahn — Banach Theorem, that T, extends to a linear continuous

functional on H . For every z € X fixed, one can therefore define the number
T,(Ky(z.%)).

where T, acts on the variable x € X . Moreover, by continuity, there holds

=3 e e, ()= ST ETe,()=1, [z (z)a;)J T (K, ().

Thus, computing u(z) for a fixed value of z € X is nothing else than computing

T,(K(z,x)).
It arises in practice that only a few Fourier coefficients < u/ e; >y of u are known or that the
Fourier expansion of u with respect to the basis {e = 1,2,...} converges too slowly. Thus, the

function K (z,x) has to be replaced by a simpler expression. Our method will therefore follow
the ideas of Paragraphs 3.2.3 and 3.3.2.

For any m=0,1,2,..., let us consider the (m + 1)—dimensional complex vector space
Emn , spanned by the Tchebycheff system
{eo 1€ 5ens €, }

and assume that £ s Satisfies Haar's condition in a finite set of pair-wise distinct points.

M, . :{ﬁm,o,ﬂ'm’],...,ﬂm,m}cX—( U Kere_j}

(Kere_j is the kernel of e_j ), that is

det mk,j — € (ﬂ'm,l ) € (ﬂ.m,l ) €y (ﬂ'm,l ) 0.

eO [ﬂ'm,m ) el (ﬂ.m,m ) . 'em (”m,m

By Theorem 3.2.5, this is equivalent to the fact that for any z € X there exists a unique element
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in Em+l:

fulfilling
Gm(x,z):KX(z,ﬂm,k) forany k<m.

Definition 3.4.1. Any function (GPT Al m)u (Z), defined by

T,(G,(x): X >C:z>T,( Z(u/e Yy o™ (2),

m

is an element of H and is called a generalized Padé-type approximant of u € H with generating

system M, |
if

Sule, >HZe_(_)[ﬁ]

(j#l/

0 forany v=0,12,..m

then T (G ( )) is said to be a Padé-type approximant to u ; it is denoted by (PT Al m) ( )

Obviously, the computation of a  generalized Padé-type approximant

(GPT Al m)u (z)z T, (Gm (x,-)) to u € H requires only the knowledge of the Fourier coefficients
<ule,>,,<ule >,,..,<ule, >,

and the functional quantities

resulting from the equations
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"

The following result justifies the notation "Padé-type approximant to u ":

Theorem 3.4.2. If
(PTA/m),(2)=T,(G,(x.))

is a Padé-type approximant to u € H , then there holds
<T, (Gm (x,-))/ e, >,=<ule,>,, foranyv=0]L..m.

Proof. Since K (~, TC e )e H (k < m), it is immediately seen that

a'"()= iLﬂ’"") eH, j=012..m,

k=0 ej (ﬂ.m,k)

and consequently
O'E’”)(-)=Z(O'§m) ey, e, () (j=0,1,2,...m).
One can therefore write

7,(G, (x.)= ﬁow/e,», o")()

~.

=S ule)) Yo e,y e, ()

:i i(aﬁm)/el),{ (ule;)y ev(’)’

which implies that, for any v =0,1,2,..., there holds
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<T,(G,(x,)) e, >,= Z<a le,yyule,)y,

m mKX
=0 (o, )/e>H(u/e>H

Jj=0 k=0 ej ”m,k
55
Observe that, for any & < m, the family

{e ()e T, j:0,1,2,...}

is summable in A with sum K (-, T,

Ky ey utule), .

xQ
ﬂ’_‘

m,

1

€ H (because of the symmetry property

KX("”m,k):KX (”m,k :))

By orthonormality, we obtain

(KX(-,izm’k)/ev)=(iej(-)ejiﬂm’k ’/e,,)H
=iej‘7z i(e le, )y

=(ule,), ,

for any v =0,1,2,...,m , which completes the Proof.
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Theorem 3.4.3. (a). The error of a generalized Padé-type approximation is

(GPTA/m), () Z Z(u/e> : 7_)[3

"L

(b). The error of a Padeé-type approximation equals

(PTa/m),()-u()= 3 | Stule, >Hzﬁ()

v=m-+1 (j:tv

Proof. (a). If T, (Gm (x,~)) is a generalized Padé-type approximant to u() € H , then

7,(G, (6 )= u()= Y KT, (G, (e)) e,y — e,y Je, ()

Il
[Ms
M=

<a§m le Y lule,y, —(ule, )H}e ()

<
I
(=]
~.
Il
(=]

(KX(-,ﬂm,k)/e»H(u/ej)H —(u/ev>H}ev(-)

Il
L
1
I
< Q
ﬂ

I

<
i
\.

g

b

g

Q
3

if k) e,y - <u/ev>4ev(-)

Il
s
o

mﬁ4
ﬁ

<
Il
(=1
,—:\
~.
=)
<

(b). If T, (Gm (x,-)) is a Padé-type approximant to u(-)e H , then repetition of the Proof of (a)

shows that
7,6, () -ul)= 3 | Suse, >HZ—(—)
v=m+1| j=0
(j#v)
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By Schwarz’ s Inequality, we directly get the following:

Corollary 3.4.4. Let u() € H . Let also

M= (”m,k )mZO, 0<k<m

be an infinite triangular matrix, with elements 7, , € Q, such that for any m 20

7rm,k ¢7z-m,k' (lf kik')’

o e( U Kerm] (if k<m)

0<j<m

and

det[ejifrm,k }]k’j #0.

Assume that

if

1
Kyl(z,z)2 <

Sup zeE
for some subset E of X, then the restriction to E of the corresponding generalized Padé-type
approximation sequence

{(GPT4/m), (2)=T,(G, (x,)/; :m=0,12,..}

u

converges the restriction u(-)to E , uniformly on E .

The Proof of Corollary 3.4.4 is similar to that of Theorem 3.3.14, but in general the

assumption that
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1
sup,., Ky (2,215 < o0

is strong and constitutes a serious obstacle to obtain global converges answers. We can however
obtain particular results, which may lead to interesting and satisfactory applications. The first

such result is easy and in a sense automatic.
In the sequel, if we H, u € H and if (w/u),, =0,then w is said to be orthogonal to
u and the notationw L uis used. Obviously, the relation 1 is symmetric. If £ H and

S — H , the notation E 1 S means thatw | uwhenever we H and u € H . Also, S*is the set

of all we H that are orthogonal to every u € S .

Theorem 3.4.5. Let u€ H . Let also 7,7, ..., %, , be a finite set of pair-wise distinct points

of X such that

Tk g( U Kermj (if k<m) and det[ejiﬂm,k )Jk,j #0.

0<j<m
I
ie ; (.)i AN L ou()  forall v=012,.,

then there holds

(where all limits were taken with respect to the ||||H —norm).

As another almost such automatic result, we also mention the following:
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Theorem 3.4.6. Let S be a subset of H . Let also
M= (ﬁm,k )mZ0,0SkSm
be a infinite triangular matrix, with elements 7, , € X such that for any m >0
Tt # T if k=k'),

s g[ U KermJ (if k<m)

0<j<m

and

detlejiﬁm,k ’Jk,j #0.

If
[limm_m iej ()ﬁ:M ]e St forevery v=0,12,..,
ejiirm’k )

then for any u € S there exists a subsequence {mi = 0,1,2,...} of {m > 0} such that
hmi—)oo Tu (Gm1 (x’.)) = u()
(where all limits were taken with respect to the |||| ,, —horm).

Proof. Fix any u € S . Since the function

(;0 k=0 €
#v) H

AZH—)RU{—OO}:fHA(f):: _Vi; f—tim, Zm:e/‘('{i eV(Z:]]:)J

is upper semi-continuous (i.e. A is the point-wise limit of the decreasing sequence of continuous

functions
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we have

T 3100 (05 ev(”mﬂnmw $e 3 ev(”mkﬂ 0,

v=0 (j:fv) k=0 ej EM,k (';?V) k=0 ej ﬂ'm k ”
YO - L - ev(ﬂ-m,k)_ . L L eV(ﬂ-mk)
= limmoe ; <M / (;)e] ;m llmm_)oo (;)e] ; ej ﬂ'm’k j| m }
| =v J#V
& liM e i (u/ ieji ZV(Zm’k) Yu e, ()
L
L L ev (ﬂ-m,k ) —
(u/{hmm_m (%ej;m}>H ev({ =0
j#v) H
= lim e i(u/ iej N :v(zm,k) e ()
G
=0

j¢l/

—(u /[hmm% fole za(m)} {

H
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— e e aeln.)
< limised Y (u/ %3812‘(_) Y, e ()

v=0 k=0 €;\ T,
w no ez, )

=>1 / 7—) -,
;1mm_m<u .=0 Z e,

jiV

for some subsequence {m l=0,1,2,...} of {mZO}. It follows, from Riesz’s Representation

i

Theorem and from Theorem 3.4.3.(a), that

o0 . m m ev(ﬂmk)
ooT 9 —u\ = hmm—>00u ej V.
i, [7(G, (v)=0)] =3 tim, . & Lo lm )l

Our hypothesis that

[lim,, Ze Z ]e St
k=0 e\,
j#v
now shows that

m,.[7,(G,, (x.))-u()]=o0.

which completes the Proof.

Our next objective is to propose a representation for generalized Padé-type approximants
to elements of /. As it is pointed out, the functional 7, extends continuously and linearly on
H , whenever u € H. By the Riesz Representation Theorem, there exists a unique element
U e H satistying

Tu(g):<g/U >, forallge H .
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If, in particular, g(é’) =e, (é’ ), (Cf € X), then

T )=<e, 1U>, (v=012..).
Since, by definition, we also have
T(ev)=<ule, >,=<e, lu>, (v=012..).
we conclude that
<ev/U>, —<e /u>,=<e, lu>,—<e /u>,,

or equivalently

<e  /U-u>,=<e, lu>,—<e, /u>,, foralv=0,12,.

Theorem 3.4.7. Suppose the inner product of any two real-valued functions in H is real. Then
(a). Tu(g):< g/b_l >, , whenever g € H ;

(b). every generalized Padé-type approximant T, (Gm (x,-))to u()eH , Is written in the

following form :

Tu(Gm(x,z)):<u/Dmi',zi>H (zeX)
with
n e (x
Ky(em, )X ——(71)
0 Jj=0 ej ﬂ'm,k

Proof- Let u = (u(]) + iu(z))e H and w= (w(l) + iw(z))e H . It is readily seen that

NgE

D, (x,z)z

=
Il

<v_v/L_t>H:<w(l) —iw® /1y @ >H=[<w(l)/u(l) > rew@ /y@ >H]
+i[< w/u® >~ W@y O >H]

and
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<w/u>,=< w o iw® 7V 4y @ >

=|_< w74 >+ <w? /u? >HJ—i[< w74 >, —<w? /u®? >HJ.
From our assumption, it follows that:
<wlu>,=<wlu>,.

Hence

<e, /U-u>,=<e,/U-u>,=<e, /u>, —<e,/u>, =0,

whenever v =0,1,2,... By completeness of the system {ev V= 0,1,2,...}, we therefore obtain

U =u , which ends the Proof of Part (a), since
T,(g)=<g/U >H=<g/;>H forall ge H .

In particular, for g() =G, (-, Z), we have

“ < KX > m,k
—{2752 (ﬂ )J/mﬂ

where we have used the notation
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The Proofis now complete.

Since T, (Gm (x,'))e H whenever u € H , an application of the Closed Graph Theorem

shows that the operator
7(G, (x,): H—> H: u(z)~T,(G,(x,2)=<u()/ D, (,2)>,

is continuous. This operator is called the generalized Padé-type operator for H . The continuity

property of the generalized Padé-type operator gives us interesting convergence results:

Theorem 3.4.8. Under the assumptions of Theorem 3.4.7 and if the sequence

{u eH v= 0,1,2,...} converges to u with respect to the ||||H — norm, we have

lim, ,, 7, (G, (x))=T,(G, (x,))

in the ||||H — norm.

Corollary 3.4.9. Under the assumptions of Theorem 3.4.7 and if the series of functions

u=2av u, (a,eC,u,eH)

v=0

converges with respect to the "” ,, —horm,
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in the ||-||H—n0rm.

One may also define generalized Padé-type approximation to any linear operator
(bounded or not)
F  H— H.

To do so, observe that the operator
To(Kx(5x): H>H ub Ty (K (x))
coincides with F', in the sense that

TF(u)(KX (z, x))z [F(u)](z), forallue Handall ze X .

Definition 3.4.10. The linear operator

TF(*)(Gm (x,~)): H->H:u— TF(M)(Gm (x,'))= Z(F(u)/ ej>H 05.'")(')
=0
is called a generalized a Padé-type approximant to the operator F', with generating system

M

m+l *

In analogy to the preceding cases, the computation of a generalized Padé-type

approximant 7’ F(*)(Gm (x,-)) to I requires the knowledge of the functions

oy (1" ()0 ()

resulting from the equations
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and of the linear bounded functionals< F(¥)/ e, >, ,...,< F(*)/e, >,

(F,)  <F()e, >,: HoCgr<F(g)le >, (j=012,..,m)

J

Remark 3.4.11. There are many cases where the functionals < F (*)/ e; >, can be handled by

means of the spectral theorem. If, for example, F' is in a closed normal subalgebra A of the
Banach algebra of all bounded linear operators on H containing the identity operator, then there

exists a unique resolution of the identity 1 on the Borel subsets of the maximal ideal space A

for A satisfying

<F(g)le,>,= Fduy,) (geH,j=012..)
A

where F s the Gelfand Transform of F; if F is self-adjoint, then there exists a unique

resolution of the identity p on the Borel subsets of the real line, such that

<F(g)le;>,=[tdp . \t) (geH,j=012..).

From Theorem 3.4.3.(a), it follows that the error of a generalized Padé-type

approximation to F is the operator

TF(*)(Gm(x") Z Z(F /e, >Hze—(ﬂ__)

Ll
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A natural question which now arises is the following. Suppose we are given a sequence of
generalized Padé-type approximants to the operator F' . How can we tell whether this sequence
converges to F' ?

A reasonable and satisfactory answer to our question results directly from Theorem 3.4.6:

Theorem 3.4.12. Let S be a subset of H . Let also
M= (ﬂ.m,k )mZ0,0SkSm
be an infinite triangular matrix, with elements 7, , € X such that for any m >0

Ty E70,0 (i k=K'),

s g{ U KermJ (if k<m)

0<j<m

and

det[ejizzm’k ’]k,j #0.

Suppose F' is bounded. If

[hmmﬁm Ze z

koe T,

]e F(S)"  forevery v=012,..,

]¢V

then there exists a subsequence {mi = 0,1,2,...}0f {m > O} such that
lim,.,, Tp)(G,, (x)=F(x) inS,

where all the limits are considered with respect to the ””H — norm.
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3.5. Applications
3.5.1 On Painlevé’ s Theorem in Several Variables

The mapping properties of the Bergman kernel function have a central role in the study of
bianalytic maps. It is well known that the statement of a Riemann Mapping Theorem in several
complex variables must be quite different than in one variable. Chern and Moser built on the
pioneering work of Poincaré and E. Cartan to produce a complete set of differential-geometric
boundary invariants which must be preserved under a bianalytic map between smooth strictly
pseudoconvex domains in C" ([32]). In order to see that the Chern-Moser invariants are preserved
under a bianalytic mapping, it is important to know that a bianalytic map between smooth strictly
pseudoconvex domains must extend smoothly to the boundary. A fundamental result dealing with
the C”extension to the boundary of bianalytic maps between smooth strictly pseudoconvex
domains was proved in 1974 by Fefferman ([59]). This result is classical in one complex variable,
but in several variables it had been a major outstanding conjecture for many years. The first Proof
in the one variable setting seems to be due to Painlevé ([115]). Other proofs were given by
Kellogg and Warschawski (see [87] and [124]). One would like to adapt the proof of this result to
more general situations, however many obstacles present themselves. The main purpose of this

section is to propose an extension of Painlevé’s Theorem in the case of arbitrary open subsets of

C", by using generalized Padé-type approximants.

Let Q # & be a bounded open subset of C". The subspace OL*(Q):=0(Q)NL*(Q) is
closed in the Hilbert space L*(Q) and hence is itself a Hilbert space. The evaluation map

OLX(Q)—>C: f = f (w) is a continuous C-linear functional, whenever w € Q2. By the Riesz

Representation Theorem, there exists a unique element K, (-, W) € OL*(Q) such that

Sw)=[F)K (& w)av (&)=, Ko, w)
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for all f € OL*(Q). Here, (-,) denotes the inner product in L*(2) and ||||2 the corresponding

norm. Remind that K, (Z, W) is called the Bergman kernel function in €2 as a function of z . The
Bergman kernel function is analytic in 2z, conjugate analytic in w and satisfies
K, (Z, w) = Kin,Zi(cf. Paragraph 3.2.1). There is a bounded orthogonal projection, of norm

1, P,:L*(Q)— OL*(Q) called the Bergman projection of €2, satisfying
Po(f)0)= [Kaow) f(w)dr(w) 1 e’ ().
Q

The property that the Bergman projection operator preserves differentiability up to the

boundary can be used in the study of boundary regularity of bianalytic maps. The open set Q. is

said to satisfy condition (R d), for some d €N, if there is an integer s with d +s > 0 such that

the Bergman projection operator is a bounded map from C s (ﬁ)into c’ (5), that is

Z:supzEﬁ Di")J'KQ (z, w)f(w)iV(w <c, Z:supzEﬁ ‘Dz(“)f(zx ,
Q

aeNg aeNg
‘a‘éd ‘u‘SdJrs

(feC™ (5)) for some constant ¢, < oo . The open set € is said to satisfy condition (R), if it
satisfies (Rd) for any d €N. One of Bell’s Theorems says that a bianalytic map between

bounded pseudoconvex domains in C" with C” smooth boundary extends smoothly to the
boundary as soon as at least one of the domains satisfies condition (R) ([9]). Another important

program in this direction has been initiated by Ligocka in [97]. The single most general

contribution to come from this program is the discovery of the following:

Theorem 3.5.1. If Q, and €, are bounded pseudoconvex domains in C" with boundaries of
class C* which satisfy condition (Rd), then every bianalytic mapping of €, to Q, is in

c'le).
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Condition (R) holds for many domains of C" (for example, every smoothly bounded
complete Reinhardt domain satisfies condition (R) ([124])). But on the other hand, Barrett found

a smoothly bounded not-pseudoconvex domain in C* which does not have property (R d) for any
d eN([7]). It should be mentioned that, since the Bergman projection £, and the 9 -Neumann

operator N are related via Kohn’s Formula : P, =1 — 9* NG (,where 9* is the formal adjoint

of the operator 9 ), whenever the § —Neumann operator associated to a domain satisfies global
regularity estimates that domain satisfies condition (R) Kohn has shown in his paper [85] that
the 9 —Neumann operator N satisfies these estimates in a variety of domains. Among these

domains are smoothly bounded strictly pseudoconvex domains ([69]) and bounded pseudoconvex

domains with real-analytic boundary ([86], [124]). Below, we shall give sufficient conditions for
the extension of Painlevé’s classical Theorem in C". These considerations seem to be theoretical,

but they succeed in eliminating both differential-geometry and subelliptic estimates for the

9 —Neumann problem and, on the other hand, they connect bianalytic extension problems with

approximation and interpolation theory.

Let Q be any bounded, non empty, open subset of C" and let {¢j ij= 0,1,2,...} be an

orthonormal basis for OL*()). Choose an infinite triangular matrix

M= (ﬂm,k )mZ0,0SkSm
such that for any m >0 there holds

i €Q (k<m),

Tos & Ty (kK£K"),

i & UKer(p_j (k<m),

0<j<m
and
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det|g0j‘7zm,k Hk’j #0.

Consider the associated generalized Padé-type approximation sequence to Bergman’s projection

P,:
by Gl m=012.)
In what follows, we shall assume that, whenever w € Q2 is fixed, the series
€) S o,()p ) converges toto Kolw)in C*(Q):
=
then, it is immediately seen that K, (- w)e C*(Q) and therefore
T, (@) (G (e = ().

In other words, the subspace C ¢ (ﬁ) is an invariant subspace of the generalized Padé-type

approximation operators.

Under the  general  presupposition (C p ), the  restriction  operators

T P, (*)(Gm (x,-))/ ci(@)3re continuous with respect to the topology induced by the norm |||| c, (a)of

c (ﬁ) In fact, for every f € C a (5), there holds

HTP o(f) (Gm (x")j

c(o) < jzr:(;‘<P9(f)’¢j>‘ "Z’:‘;m HKQ('»”m,kX

c'(a)

2. c'(a) (by Schwarz’s Inequality)

<SR Llo], 2ok

(since ||PQ || =1land “goj Hz =1)

c*(e)

<. 2y Iabmac)

mom
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w1

for some positive constant ¢, < oo depending only on €. Further, we have the

Theorem 3.5.2. Let d e Ny=N U{O} . Assume that Q) verifies Property (C d) and that there is a
complete orthonormal basis {gov eC’ (5) V= 0,1,2,...} for OL*(Q) and an infinite triangular

matrix M = (”mk) consisting of points 7t , in € such that

m>0,0<k<m

T £y (k2K 7, 2 UKer(p_j (kSm),det|(pjiizm,k ij =0,

0<j<m
and

lim, . g(p } (x)l:i 2. )} = 9,(x)

k=0 ¢)j (ﬂm,k )

for every x € Q and every v =0,1,2,... Then, Q satisfies condition (Cd )

Proof. Let f e C* (Q) As it is pointed out in Paragraph 3.2.3,
Po(fX2) = Ty ) (K (2. x)).
Since K, (Z,') = KQi',Z ) eC’ (f_l), we see that

P(f)ec(@)
and therefore

= TPQ(f)(KQ ('ax)_ G, (xa')X

c’(a)

12 ()= Ty (G ()

By the integral representation of T () it holds

()

HELLENIC ARMS CONTROL CENTER PUBLISHING
378 published on line as an e-book in 2007
www.armscontrol.info




N.J.DARAS PADE-TYPE APPROXIMATION TO FOURIER SERIES

HP o ()T, P (f)(Gm (x))(

[P Kalo) -G, @-)]w(%

e o)
3 s o0 PN o), 2o
e ?
< SIRar), sup 5D [Kalz)-G, (2],
o
IR, Y s 0K (2 G )]
e
Now, observe that
DK, (z,x)= DY 0,(2)p,(x)= 2. 0,(x) D9, (2)
v=0 v=0
and
DYG, (%)= DU 3 A o7 )(pj =003 3250 (o lx,,
J=0k=0 PN\, & j=0 k=0 @ \TT, & Jv=0
s s bt
v=0 | j=0 k=0 P\ i
It follows that

HP (0T, P (f)(Gm (x))(

c'(a)

et alv=o e O

‘a‘sd

<IBa(), zzsupze{J

Setting
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) (5,2) i{% (- S0, 5 Z{—%} D (2),

it is enough to show, that, for any a € N (2)" with|a| <dand any & >0, there existsa M =M (a,g)

such that
‘H,(n”)(x, zx <&,

forany m >0, every z € Q and almost all x € Q. Since

lim, Ji;(oj (x)kzm(;%(%i) =p,(x) for almost all x € Q,

it suffices to obtain the uniform convergence on €2 of the series H (“)(x,-), whenever x€e Q, m=>0

m

and ae N ?)" with|a| <d . But, this is true because of Property (C 4 ) In fact, for each x € Q fixed,

eachm > 0and each a € N(z)” fixed (|a| <d), we have

i{% ()30, ()5 2 )} D, ()

=0 =0 P \TC,, 1

7=0 k=0 P\TCy i v=0
m m l
:D(“)KQ(’x>—Z¢jix.’z D(a)KQ(.’ﬂ-m,k)’
7=0 k=0 P\, i
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with uniform convergence on Q of any series participating in the above equalities. This proves the

Theorem.

3.5.2. Numerical Examples
Example 3.5.3. It is well known that the function

f.(t)=e" (-m<t<nm and a=0),

has the following Fourier series representation

ar -

F()= F,(f)= % ;—a + i% (a cos(vt) —v sin(vt))}
on the interval — 77 < ¢ < 7. It holds
f.()=F,((t) forany te(-nx).
(However,
F,(£7)=cosh(ar)#e*” = f,(x 7)

and therefore we must consider the following 27 — periodic extension of f, on [— T, 72']:

at

f(t)—{ e”, if —m<t<r

cosh(ar), if t=%r

and then approximate ija (?) in the Padé-type sense.) Evidently, for every ¢ € (— 7, 72'), we have

fi()=e" =F,(1)= l{ L,y (2_ 1)V2 (acos(ve) — vsin(vr))

V4 2a S vi+a

_e"-e™ i (_ l)v (ea” —e )(a +iv)e +i (_ l)v (ea” _e_a”)

2ar = 27r(v2+a2) ~ 27r(v2+a2)

(a—iv)e™
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_ 2 (_ lz)v(ea” _eia”)eivt )

— T (a - iv)
Define the C-linear functional T ;. P(C)—>C associated with f by

_ =D" (e —e ™) (a+iv)

=0,12,...).
27z(v2 +a2) (V T )

T, (x")=cl":

Given any matrix
M = (ﬂm,k )mZ0,0SkSm
with complex entries 7, , € D (< ‘ﬂ'm’k‘ < 1), then, for any m > 0, a Padé-type approximant to

£ (¢) is a function

Rem/m+1), (¢)=2ReT, (Qm (x,e” ))— clo)

o (Viae™ =V,
e—ll -Tfa ( m+l (e _it) m+l1 (x)j
e —X
=2.Re —cy”

Vm+1 (e_it )

where QO (x,e”) is the wunique interpolation polynomial of (l—xe” )_l at

(ﬂ'm g€ ),(ﬂ'm e ),, (ﬂ'm " ,e”) and where

Vo 0)= 7 [ (6= 7,.,)

m
k=0

is the generating polynomial of this approximation (y €C— {0}). For information about Padé-
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type approximation to a 277 — periodic L* — function, one may consult [43].

We will consider several different cases.
(a). Choose m=4 and 7, =7, =7,, =7, 5 =7,, =0; then

o Vi(x)=x",

—it

. V(e_”)—V X . . iy . L
° eltTf( 5 : 5( ) :ettTf (x4+x3e tt+x26 21t+xe 3lt+e4lt)
Ja e _x a

=it ( () —it (a) —2it ,v(a) -3it ~(a) ~4it ~(a)
=e .(C4 +e " Cy +e M C + e ClY te CO)

e —e )] a+4i  _,a+3i L, a+2 5, a+i 41
e ~+e e ———e |,
2 16+a 9+a 4+a l+a a
o Vs(e—it):e—sn’

and

ar —anr . . . .
—e a+4i ., a+3i L a+2i s, A+ |
( _ett +eZzt _e3zt +ezt_

it \16+a’ 9+a’ 4+q° 1+a’ a

Re(4/5), = 2R{62ﬂ =

eaﬂ _ e*aﬂ'

2rwa

16 +a’ 9+a’ 4+a* 1+a’ 2a

_ eaﬂ _e—aﬂ' |:Re{(a +4l-)e4it} ~ Re{(a+3i)63”} n Re{(a + 2i)€2it} _ Re{(a+i)eit} +i}
T

Since
Re{(a +4i)e*" }: acos(4t)—4sin(4¢), Re{(a +3i)e™ }: acos(3t)—3sin(3¢),
and
Re{(a +2i)e" }= acos(2t)-2sin(2¢), Re{(a +i)e” }= acost—sint ,

it follows that
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e’ —e " | acos\4t)—4sin(4t) acos(3t)—3sin(3¢
Re(4/5)f“: Vd { (16)+a2 ( )_ (91-a2 ( )

acos(2t)-2sin(2t) a.cost—sint 1 }
+ - +— 1,
4+a’ 1+a’ 2a

that is

Re(4/5), ()= e”‘_e{ L, i(z_Tl)vz(a cos(vt) - vsin(vt))} ([43).
’ 1% a

V4 2a 5

In other words, if m=4 and 7, =7, =7,, =7,; =7,, =0 , then the
Padé-type approximant Re(4/ 5) P (t) is nothing else than the trigonometric polynomial formed

by summing exactly the first five terms in the Fourier series £ (t) of f, (t) Unfortunately, this

choice is not very successful because of the failure of the corresponding approximation in some
trivial (but characteristic) cases. If, for example, ¢ = 0, then

ale” —e ) 430 -110a> 104" 1
Re(4/5), (0)=
(4/5),,(0) P {(16+az)(9+a2)(4+a2)(1+a2)+2a2}’

and for a =1 we obtain
Re(4/5), (0)~5.0116 (while in such a case f;(0)=1).
Similarly, for a = 1,
Re(4/5), (0)~5.0116 (;while f-,(0). equals 1).

Further, if £ =1, then

" — e [a(=0.5)+3.4641016 a(-1) a(~0.5)—1.7320508
Reld/5),,(0)="— [ 16+a” “9vat 4+a’

a(0.5)-0.8660254 L
l1+a* 2a |
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and,for a =1, we have

Re(4/5)ﬁ(l)z7.3521621[0.1743589+0.1—0.4464101+0.1830127+0.5] (while i
while in
=3.756617
sucha case f,(1)=e~2.7182818).

i
(b). Choose m=3 and 7, =75, =75, =0, 7,3 = 5 Then

3
. V4(x):x4 +ix—,

o (Vie™)—V. ' o i e
. e—an 4 (e 7') 4 (x) :e—an JC I LI [V L I
Ja e it —x a 2 2
—2it
+ {e” +i e—D
2
) ) l ) e*it ) 672”
=e"|CY +|le" +=|CY +| e +i —|C1V +| e +i — |C”
2 2 2
e —e™ 1 i a+i |, |a+2i l—ai |,
=—¢ — |+ —- >l + ~+ = le
2r a 2a l+a 44+a° 2+42a
—a-3i —2+4+ai| 5
+ — |+ = e |,
9+a 8+2a

o 7, (e_” ): 6_4”(1 + l%”j .

Therefore,
1 i a+i | , a+2i 1—ai 2it
@ _gar ol 2a 1+a2 )¢ Tara 24247 ¢
Re(3/4), (1)= S—5— {Re| 24 L2274 SR a
Ja T ‘e
I+i—
2
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[—a—?)i —2+az} st
+ e
N 9+a’> 8+24’ 1

e 2a

1+i

Let us give a more explicit form for Re(3 / 4) P (t) Since

e sin¢) .cost
I+i—=|1-—|+i
2 2 2

. 2 2
sint cost 5 .
l-———| +|—— | =-sint,
-5+
i a+i | 4, a 1 1 .
—_—— et = - - Cost—| —— — | sin¢
2a l+a 1+a 2a l+a
. a ) 1 1
+1|— > sSinf—| —— > |cost |,
1+a 2a l+a
[a+2;+ l_alz}ez”=( a ~+ ! chos2t—( 2 ~— a 2jsin2t
4+a 2+2a 4+a 2+2a 4+a 2+2a
+i ( a ~+ ! 2]sin2t+( 2 - = 4 2]cos2t ,
4+a 2+2a 44+a 2+2a
[_a_§l+_2+azl}e3”= ( —a2+ _zzjcos3t—( a - 3 2jsinf&t
9+a 8+ 2a 9+a 8+ 2a 8+ 2a 9+a
. —-a -2 . a 3
+i -+ - | sin 3¢+ - = | cos3t |,
9+a 8+ 2a 8+ 2a 9+a

we have

Re(3/4), (¢)

b
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1 e —e || 1 a 1 1 : a 1
= —— = COSt—| — — —|sinz + -+ 5 cos 2t
5 Vs a l+a 2a l+a 44+4a° 2+2a

2 a ) —a -2 a 3 . sint
- -+ 5 sin 2¢ + ~+ > cos3t — - = > sin3¢t||1———
4+a 2+2a 9+a 8+ 2a 8+ 2a 9+a 2

—-a . 1 1 a 1 . 2 a
+ —.sint+| —— - |cost+ -+ > sin 2t + - - > cos 2t
14+a 2a l+a 4+a 2+2a 4+q 2+2a

— —sint
—a -2 . a 3 cost| 4
+ -+ - | sin 3t + - - | cos 3t — >
9+a 8+ 2a 8+ 2a 9+a 2 2a

1 e’m—e || 5 1 1 1 a 1 )
= . - = |+ ——+ =+ =+ > [sint
5—4sint T 8a 2+2a 2a 1+a° 8+2a° 4+4a

S5a 2 .
+| - -+ | cost+]| — -+ > sin 2t
| 4+4a” 4+a 4+a° 2+42a
[ 9a 1 a .
+ =+ > 3 cos2t+| — >+ 3 sin 3¢
132+8a" 2+2a° 36+4a 8+2a~ 9+a
+| - a - ! 2}cos3t+{— a - ! 2}sin4t .
| 94+a° 4+a 18+2a° 8+2a

In particular, for @ =1 there holds

s

3 1 e’ —e”
5—4sint 107

Re(3/4), (t)

{15+9sint—17cost—8sin2t+14cos2t+8sin3t—12cos3t—6sin4t},
and if t =0, then
Re(3/4), (0)=0 (while £,(0)=1).

If t =1, then
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Re(3/4), (1)~ 8.4068037 (while f,(1)=e~2.7182818).
As in the preceding case, these disappoint approximate results attest the failure of the choice

i
T30 =73 =73, = 0 and Ty =——.

(c). Let m =3 . We choose the zeros of the Tchebycheff polynomials
TCH,,(X)= cos(m Arccos X)

1 2k +1
divided by V7 as interpolation nodes, i.e. 7;, = —cos|: 7[} :

Jr 7

1 1
=—C0S—, /,,=——COST.
N Yo Jr

Then,

Jx N T x

=x*+0.282x> -0.318x* —0.067x +0.012 ,

e V(x)= (x - L0.9009688j (x - Lo.2225209j( Lo.6234898J (x + Lj
NS
o Vle")me " (1+0.282e" —0.318¢>" —0.067¢" +0.012¢"")

e T Ve -V, (x)| e
- v, (e—it) Ja ; - V4(e—it)

_ T, (x* +[e™ +0.282] x>

e —x
+[e?" +0.282¢7 —0.318] x+[e ™" +0.282¢ 7 ~0.318¢ —0.037))

¢y +le, +0.282¢,] €" +[c, +0.282¢, —0.318¢,] ™"
1+0.282¢" —0.318¢* —0.067¢* +0.012¢*

[c, +0.282 ¢, —0.318¢, —0.067¢,] ™"
1+0.282¢" —0.318¢ ' —0.067 ¢ +0.012¢™"

ar —ar

e’" —e
27
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l+[— ax! +O.2821} e {“22’ ~0282 271 _0318 1} !
a l+a a 4+q 1+a a

140282 ¢ —0.318 ¢?'' —0.067 ¥ +0.012¢*"

40282 T 40318~ —0.067 —

9+a 4+q 1+a a
1+0.282¢" —0.318 ¢*'' —0.067 ™ +0.012 ¢**

{_a+3i a—2i a+i 1}63“

It follows that

—it V4( —l[)_V4( )
Re(3/4)fﬂ (c)= 2Re[ V:Ze_”) Tfa( ) it - j:l )

e’ —x
—it =ity _ ar __ ,—aw
_9Re e 7 V,(e ') V,(x) e e
Vie™) e’ —x 2ra

€ {(1+0.282 cost—0.318 cos 2t —0.067 cos3t +0.012 cos )
T

1

+(1+0.282 sint—0.318 sin 27 —0.067 sin 3¢ + 0.012 sin 4¢)*} '

[1.185137 0213632 0336894a  0.067 a}
a 1+a’ 4+a’ 9+a’

{1.521358 0.51188  0.99 } .
+ — - st
l1+a’ 4+q° 9+a’

0.426456 0.839938 0.128708.a 0.306 a
+ — > + 3 + 3 CcOoSst
a 1+a 4+a 9+a

0.25594 2.135048 0.846 | .
+ — —+ - | sin 2t
l+a 4+a 9+a
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[ 0.677604 0.12708 a 1.091524 a 0.282a}
+| - - + cos 2t

a 1+a’ 4+q° _9+a2
0.33 0.564 3 )
+| - - = - = 5 sin 3¢
1+a 4+a 9+a
0.130616 0.306a 0.282a a
+| - + —+ = 5 cos 3t
a l1+a 4+a 9+a

+[°-°12}c054t}_% (3.

a a
In particular, for a =1, there holds
Re(3/4), (t)~ 7.352161 {(1+0.0282 cost — 0.318 cos 2t —0.067 cos 3¢ +0.012 cos 4¢)° +
(1+0.0282 sinz —0.318 sin 2t — 0.067 sin 3¢ + 0.012 sin 4¢)*} '
{[1.0176432]+[0.559303]sin ¢ +[0.0628286 ] cos ¢ + [~ 0.2144396 |sin 2t
+[-0.5518532]cos 2¢ + [~ 0.5778]sin 3¢ + [~ 0.021216]cos 3¢+ [0.012]cos 4¢}

—3.676081.
Thus,
ift=0,
then
Re(3/4),(0)~0.9455091 (, while £,(0)=¢" =1);
ift=1,
then
Re(3/4), (1)~ 2.8227598  (, while f,(1)=e~2.7182818);
ift=e,
then
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Re(3/4), (e) ~15.968062  (, while f,(e) = e* ~15.154261).
(However, if t = «/g , then

Re(3/4), (V3)~7.6652958, while £;(3)=e"* =5.6522335,

and if ¢ =%, then

Re(3/4), (%j ~5.7613728, while fl(%j = 4.810477 .)

(d). The above choice of the interpolation nodes (i.e.,

1 2k +1
Ty, =——=COS

N

seems to be satisfactory at least for the case a =1. However, if a = —1, then

z} ke =0,123)

Re(3/4), (0)~8.4191897  (while f,(0)=e™" ~1)
and if @ =2 then
Re(3/4), (0)~ 60.407038  (while £,(0)=1).

On the other hand, for relative choices of the interpolation nodes, the corre-

sponding approximations are not very successful.

If, for example, m =3 and 7, are simply the zeros of the Tchebycheff

polynomials TCH (X )= cos(3 Arccos X) on [~7, 7], i.e.

then

Re(3/4), (0)~ -1.2760657 (while f,(0)=1).
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If m=2,and
13 13
7,,=0, 7,, =.|—7 and @©,, =.|—7,
2,0 2.1 5 22 5

Re(2/3),(0)=4.1242233 (while £,(0)=1).

then

If m=4and 7, (k = 0,1,2,3,4) are the zeros of the Legendre polynomial

LEGS(x):x5+? —Eﬂ' x
on [— 72',71'], then
Re(4/5), (¢)
04T _ pmaT 1

T (1+41.6716cos 2t —288.5165cos4t)* +(41.6716sin 2¢ — 288.5165sin 4¢)”

2 2

84979.256 - —11981.288— % _288.516_°
a 44+q 16 +a

+[13718.815 L 1990564 2}sint+[10243.76 L 246845 z}cost

1+a 9+a l+a 9+a
+{—4052088 ! - —166.686 2}sin2t+[—23962.576l+1449.011 a
4+a 16+a a 4+a
a
+41.671 2}005%
16+a
1 1 . a
+1330.18 5 +3 5 sin 3¢ +| 246.85 > 5 cos 3t
1+a 9+a 1+a 9+a

+[—4 ! 2—83.343 12}sin4t+[—577.033l+41.6716 12+ a 2}cos4t
16+a 4+a a 4+a +a
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ellﬂ' _ e—llﬂ'

27a
(see [43]). So for a =1 and 7 = 0 we have
Re(4/5),(0)=4.0601491 (while £,(0)=1).
For a=—1and t = 0 we have
Re(4/5), (0)=4.0601421 (while f,(0)=1).
But, for a =2 and ¢ = 0 there holds
Re(4/5), (0)=47.084848  (while £,(0)=1).

(e). After these comments, it is obvious that the existence of the real parameter a # 0 may cause
various perturbations in the behavior of our approximants and, for this reason, the investigation of
a more efficacious and general conception is legitimate.

Without loss of generality, we will assume that

M<A<w.
Since | t| < 7, our starting point will be the consideration of the analytic function

£iN0,4)xA(0,7) > C:(z,,2,) = flz,,2,) = e,
Obviously,
fla,t)=e" = f,(t) forevery a e(~ 4, A4) and forevery t € (— 7, 7)
and hence, the approximation in the generalized Padé-type sense of the complex-valued function

f gives several particular results for every real-valued function f, :Since

f eOLX(A (0, A)x A (O, 7[)), we can also write

fGz)= [ A8 K ymmon (€062 dV(6,.6,)

A'(0,4)xA! (0,7)
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for any (zl,zz)e Al (O,A)x Al (0, 72'), where K is the Bergman kernel function on

AL(0,4)xA (0,77
A0, 4)x A'(0,7), i.e.

Arx
(4=, 2) (7" =&, z,)

(see Theorem 3.2.2), and where d V(é' e 2) is the volume form of C?, that is

1
K, (0,4)xA! (0.7) (€4¢2)(21,2,)) = =)

v(¢.¢2)= Gj dgy ndg, ndg; nd,.

As it is well known an orthonormal basis for OL*( A' (O, A)x Al (O, 7z)) is the set of monomials

{ I ‘51"‘52"2 av(¢,.¢, )] i =002, j, =012, 0.
A (0,48 (0.7)
If §,=x,+iy and {, =x, +iy, , then
1Y — —
dv($,¢:)= @ dgy nd¢y A dg, A de,

([dxl +idy1]/\ [dx1 _idyl]/\ [dxz +idy2]/\ [dxz _idyz])

=

([— idx, Ady, +idy, A dxl]/\ [— idx, ndy, +idy, Adx, ])

S =

([~2idx, ndy,|A[-2idx, ndy,])

NG

=dx, Andy, ndx, ndy, ,

and therefore

Gre P ar@ney= | [enilagady [ ey an aay,

AL(0,4)xA(0,7) xP+yl<a? X +yi<n’
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= J- {( yl.[t [xlt +yit’ j‘dt]dxl+(xl.[ [xlt +yit’ Jla’t]dyl}

x% -*-y§<A2

[ d{[ ¥ I e[z + y2 ) dfjdxz{xzj (e 4 i ]jZdtjdyz}

X% +y§ <ﬂ'2

(by the Proof of Poincaré’s Lemma)

2 2 i 2 2 i
= x12+y.|1;<A2d [— », —[x;; 112] }dx1 + [xl —[xlz;: ilz] del}
2 2 i 2 2 |2
I d (— v, —[xé ; i 22] dez + [xz —[x;;,: Jf 2] dez

X3 +ys<n’

_ J' — Vi [x12+y12]jldx1+x1 [x12+y12]jldy1
xt+yi=4A> 2j1+2

{ [ - a2+ 02 v, +x, [+ 02 v, }
Biepier? 2j,+2

(by Stokes’ Formula)

_ APItE gpiatd J- — y,dx, + x,dy, J- — y,dx, + x,dy,
2/ +2Q2/+2) |ape XAV |lae LY

A2j1+3 72_2j2+5

G, +D(, +1)

It follows that an orthonormal basis for OL*( A' (O, A)x A (O, ﬂ)) is the set of monomials

¢ ( le ij jlzjz : _012 =012
JisJa 1’ 2 \/_AJIH ) 1 2 .]1 L) olylgeee e
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The Fourier series expansion of f (z1 2, ) =™ with respect to this basis is
given by
— ph% N S
flapz)=e = Ydll o, ,(22,).
Ji:J2=0
with
all = | 6.6 0,68 VL),
A'(0,4)xA (0,7)

Zl Z

From the uniqueness of the Taylor series expansion for f (z1 , 22) , it follows that

4 = NAr AN g it?
J15J2 . . . .
NI LN, !

Thus, an orthonormal basis for OL*( A' (O, A)x Al (O, 7[)) is the set

{qp/ 5 (21,2,) URSNER zl'zy 1 jy =012, j, =0,1,2,.-},
12 \/A_A]l+l Jo+2

and the sequence of Fourier coefficients of f* with respect to this basis is the set
{a(f) _ ’Aﬂ' Aj1+17z_j2+2 ‘
JisJ . . ey g
NG RN R WAV
Consider now the infinite array:
Poo Poi Pon Pos - //
o P P2 P
Do Por Pry Pase.
Dso P31 Pz Pisee.

(j,>0,/,>0).

Ji =002, j, =0,1.2,...}.

The array contains all the elements of the basis. As indicated by the arrows, these elements can be

arranged in a sequence:
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Dy = Poo>P1 = Pr0sPr = Pp15P3 = Dr05Ps = P115Ps5s = D05 P = P305P7 = Dy 15

Indicatively, we observe that the first ten elements of this sequence are
(DO(ZI’ZZ):A ‘r? >
(zl,zz) \/_A 27r Z1 s
(ZI’ZZ) \/_Aizﬂﬁzz >
(Zl,zz) \/_A 272' Z1 ,
@4(21922):2‘4 ' 2zz,,

(21,22) \/_A 27[ 22 s

9 5

¢6(Zl922)=2A_E7[_EZI3 5
(zl,zz) \/_A 271' z1 z,,
(zl,zz) \/_A 27[ 222 s

0y(21,2,)=24 27 2z}
Similarly, the Fourier coefficients a' j ) of f can be arranged in a sequence:

(f) N f N f) f f N f) f f) f)
=dgy a4 =4y ,ay

=dgy,ay " =dyy,dy " =4 .45 =dy,,
(f)._ f)
6 .—a3’0...

Indicatively, the first ten elements of this sequence are

305

a(()f) = A2 2
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[
Il

)
W
|

N
~
|

3 n
22
<f)=A7T
12

For any m > 0, choose a finite set of pair-wise distinct points

o = (2020 ) 0, = (20,23 )7, = (2022 ) A (0, 4)x A0, 7),

in such a way that the determinant
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is different from zero.

If j <m,weset

Ko (222, 2@
A ,A)xA (0,7) WE12 22 )W ks o e
c;’")(zl,zz) = Z e

k=0 ®; (Zi)
A

m
— 2 ) 2 2)
L4 (A Zlﬂ-m,k)2 (ﬂ- ZZﬂ-m,k)Z q)j ﬂ-m,k

The sum

J

AL (L 1
=;Za§f)z = (”2 - _)Z
is then a generalized Padé-type approximant to the complex-valued function
f(zl,zz): e
into the bounced open A' (O, A)x Al (O, 72') cc

If, for example, m =5, then there holds

(GPTA/5),(2,,2,)

1 1

+...+ — —
2 0 2 2) 2 1) 2 (2)
(A —Z, 75, )z (7; —Z,7s5, )z (A —Z, 755 )z (ﬂ' —Z, 753 )Z

:A472_4
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N.J.DARAS

Abx? 1 1
— ——+...+ — ——
2 (#2220 0 -2y a B 2ty (42220 l2? — 2,20 ) 20
A*r® 1 1
+ — ————+...+ — —
O [P o | ) e ) | S
Adr? 1 1
— ———F——+ ..+ — ——r—
6 |42 —zanfle-nzaf@nf (e —zznf (2 sz flEnf
ASr® 1 1
— ——g—— ..+ — —————
S (P ) eI POy | APy e
A8 1 1
i — ———r——+..+ — ——Vv— [
Rl ) L =) R Ve e
under the constraint:
L) L) S ) Ll
4 5,0 jn 5,0 4 5,0 e 50750 ° 5,0
D) L6m) D) ) D)
A ’ T ’ A ’ Ar >~ ’ g V!
) i) Sy ) S
det 4 52 n 52 4 52 Ax 52757 7’ 52 0.
) 2 By 2 S
A 5.3 P 53 A 5.3 A/Z' 5,3 5.3 72_2 53
b)) L 2 i
y 5.4 ju 5.4 4 5.4 Ax 54+/t54 7’ 5.4
20 L) Dhmf Limam) D)
AN g T O A P g2 T3

As it pointed out in Paragraph 3.2.3, the best choice of the interpolation points
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5057515752553, 545755 € A (Oa A)X A (Oa 77)

is an open and difficult optimization problem of several complex variables. However, in order to
appreciate the effectiveness of the generalized Padé-type method, let us give a typical result about

the approximation of the real function
fa(t):em (Cl # 0)
Of course f, (t) =f (a, t) and in practice we can always take
“|d).

If €>0,{ >0 and 0 > 0 are very small, then, by choosing

7[5(1,2 =0 and 7[5(2,2 R T (k = 0,1,2,3,4,5)
such that
5 Lo 72.(2) 2
Log| — H g ——1+ Log T 4is
0 @ A?
O k=t |Log7s, + Logrs,
TTso = €Xp . ,
Log;z'(l) +H Logﬂ(z)
k=1
5 Lo 72.(1) 2
Log| — Stie H i & ——1—Log T 4is
1 2 2
@ _ k=1 Logzz() +L0g7z( ) A
T, =exp
5,0 s
H Logzz(” + H Log;z'(z)
and

M- L
‘}L‘. NT
TN

hk o~
+
™

—

T
(=]
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we have

k=0
LTI - —of o (o of
r——A'r Z A° —ars, =07z} ) \msp 7si) s
4 k=0
1 s 4 < 2 ~o I T) o I
—A'r Z A" —a 7s, 7’ -0z TTs )
6 k=0
ELIPTIER —o |’ JRCIN Rl P
~——A'rw Z A* —a Tsy =0 72 ) \72 ),
6 k=0
1 6 4 e o T) (o)
—A'n Z A ars; 7 -0 7! TTsp
2 k=0
T 2 2 —ol? ) o -of
~—EA72' Z A" —ars;) \m” =07z} ) \7sk
k=0

for any a # 0, which implies that

(GPTA/5),(a,0)~ £,(0), forany a>0.
(Here, the function Log :C —] 00, 0) — C denotes the principal branch of the logarithm, that is
Logz = log|z|+i argz, with —z <argz<rz.)

Furthermore, under the same constraint and if

5 5
Zaﬁf Z ¢ (ﬂ-sk) O (V = 0,1’2,3,4,5),
(‘=o k=0 @; (ﬂs,k)

Jj#v)
or explicitly if
ZS: o {27[ [72'(1)] +2A4[7r(2)] +34%x [7[(1)][7[(2)]-}-67[ [72'(1)] [7[(2)

k=0 |Tsi 7T k
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+64 x|z ]?}=0,

ZS: W{zﬁ [71'(1)] +2A4[7z(2)] +3A47Z4[7Z(1) [7[5(2,2]+ 67° [7r§1,)C [7[5(2,2]
5.k

k=0

> l—l)lzlm prtle) ]+ 24 [z P4 34227 20 ][22 |+ 6 42 [0 |2 2 ]
k k

g ﬂ_ézlk) . { or [”(1)] 3427 [ﬂ_(l)][ﬂgzk)]er[ [”(1)] [”(2)]+6A2[7z-<1)][;z-(2)

+ 12[7r(1) ] [7[(2) }

k=0

+6lzy [Pl j=0

Zs: W]-[—]{&r [71'(1)] +2A4[7z(2)] + 677 [ﬂ(”] [72'5(2,2]+3A2[7T(1)][7Z'(2)
5,k

and

> @7{2144[7[(2)] 34727 70 78 ]+ 627 [2 0 ][22 |+ 6.4° [0 ][22 ]2

k=0
ol e o

then the Fourier series expansion of (GPT A/ 5) I (Z1 2,y ) with respect to the basis

{(00(21,22 ),(01 (21322 )’}

matches the Fourier series expansion of f (21,22) (with respect to the same basis) up to the
(m + l)th term. In such a case, the function (GPTA/ S)f (zl,zz) is a Padé-type approximant to

the Fourier series of f (Z1 , zz) with generating system
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{7[5,05”5,1a”s,za”s,sa”s,w”s,s}a

or simply a Padé-type approximant to f' (z1 2,y )

Example 3.5.4. For any a €R, let f, be the real-valued function

£, (t)=sinh(at) (t€eR).

The Fourier series F, (t) of f, into (— T, 7z) is given by

F ()= 2sinh(a ) i (—21)”+1v sin(vr) = i (=1)"ivsin(arx) o
r prdlY

¢ +a’ = oz +dd)
(v20)
Consider the C-linear functional 7', associated with f:
0, if v=0
T, PC)>C:x">T, (x”)= cf“) =3(=1)"ivsinh(az) . B
— , if v=L2,.
(v +a’)

If
M= (ﬂ-m,k )mzo,OSkSm

is a complex infinite triangular matrix, then, for any m > 0, a Padé-type approximant to £, (t) is

a function

e’ —x

Vst (e_it) =V (x)j
(_

e_”Tf;,(
Re(m/m+l)fa(t)=2Re T<t<nm),

Vm+1 (e_it )

where

Il
—
=
|
B
&
bl
~

Vo (x)
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is the generating polynomial of this approximation (y eR — {0}) (see[43]).
@.lf m=3and 7, =7, =7, =7;; =0, then
eV, (x) =x*

v+l

Re(3/4)fa (t)= 2.sinh(a) 23: Ch7v sin(vt)=

T vi+a®

=2'Sinh(a”)( ! sint — 2 sin 2 + 3 sin3tj ([43)).

V4 1+a* 4+a* 9+a’

Hence,
a 1/2 2
f fi2(0) Re(3/4), (c) | /.() Re(3/4), (¢)
0 0 0 0 0
—% -0.2648002 -0.2954575 -1.249367 -19.476309
z 0.3193525 0.308832 1.614488 16.920309
5
z 0.4028703 0.3025888 2.3012989 9.3066229
4
% 0.5478534 0.2660742 3.9986913 -7.3807882
% 0.8686709 0.4436537 11.548739 -5.2446673
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At first glance, the numerical results in the above table show the insufficiency of our choice (at

least for a = 2). However, for m enough large and
T =-=Tpm =0,

the corresponding Padé-type approximation coincides with the partial sum of the first m terms of

F, (t) and therefore his effectiveness is given and encouraging.

2
(b).Ifm=3 and 75, =75, =75, =0, 75, = 3 then

e’ —x

i 3 2 oy 2 = 2
—e it [c(()a) 3it + cl(a) +_c(()a) e 2it + Céa) +_Cl(a) e it + C;a) +_C§a)
3 3 3
—4it (a) it (a) 2 (a) 2it (a) 2 (a) 3it
=e . Cl e + Cz +§Cl e + C3 +§C'2 e N

o V4(e_”): e“‘”(l%—%e”j.

Thus,

7it - . . . . . .
R eitTfa|:V4(e ) V4(x):|=ethfa (63” +e—21tx+e—ztx2 +x3 +§e2zt +§e”x+§x2j

_ ) , b ,
(cl(a)]ezt +|:C§a)+3cl(a) o2t 4 c;a)+§c£a) Pl

1+ze
3

Re(3/4), (t)=2 Re

it
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2sinh(a ) 13 12 . 6 26 18 .
= - = — | sinf + - = ~+ - | sin 2¢
7 (13+12cost) \[1+a" 4+a I+a” 44+4a° 9+a

27 12 .
+ - = > sin 3¢ |.
9+a 4+a

It follows that (see[43])

a 1/2 2

4 fin(e) | Re(3/4), (1) | £.(0) Re(3/4) . (¢)
0 0 0 0 0

—% -0.2648002 |-0.2773082 -1.249367 -2.0063189
z 0.3193525 [0.3317165 1.614488 2.1108546

5

% 0.4028703 [0.4127542 2.3012989 2.0641907

% 0.5478534 [0.7364422 3.9986913 1.6883143

% 0.8686709 |0.8430904 11.548739 3.4292061

1
These results seem to be enough successful (at least for the case a = E ). But, on the other hand,

some unexpected difficulties appear: if, for example, a = —3 then
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Re(3/4), Gj = 25.194418 while ., Gj = 52279719,

Re(3/4), (gj = 2.0744719 while £, (%j — —11.548739

etc.
Obviously, the variation of the real parameter a may cause spectacular pertur-

bations in the behavior of our approximants and, therefore, we must seek for a more satisfactory

approximation in the generalized Padé-type sense.
(¢). Assume that |a| < A < o and consider the analytic function
f:A(0,4)xA'(0,7) >C:(z,,2,) > f(z,2,):=sinh(z,,z,).
It is clear that f € OLAA'(0,4)xA'(0,7)) and f(a,t)= f,(t) for every ae(~4,4) and
te(-mzn).
As it showed in Example 3.5.3.(e), an orthonormal basis for OL*(A'(0, 4)x A'(0, 7)) is

the set of monomials

{(”/1 ]2( 2,,2,) \/LAJIHJZ T ? 2 j,=012,..., /, :0,1,2,..}.

The elements of this basis can be easily arranged in a sequence as follows:

Do = Po0sP1 = Pro0sP2 = Po15P3 = Pr05Ps = P115Ps = Py osPs = P305P7 = Py 5eee

With this arrangement, the first six elements of this sequence are

(Zlazz) V24> 277 Z1>
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pienz) =242 s,

5
(zl,zz) \/_A Vs Z12 ,
5 7

Dy (Zl »Z) ) = 2A777752122 >

(zl,zz) V342 27[ 22.

Further, the Fourier coefficients of f with respect to this basis are the successive

elements of the set

o Ji A+l jy+l
g A=) AT A A j =012, j, =012,

JisJa 2]1']2' ,j1+1 [jz_'_l .

These coefficients can be arranged in a sequence

(f) _a(()J(”)),al(f) _al(f(;),agf) _a(()];)’agf) _agf;)),agf) _al(Jl’)’agf) —Cl(()fz),
) — )
ag’ =asy ...

The first six elements of this sequence are the numbers

ash =0,
55

al(f) A*rm
V2

f)

2 0,

)

3 0,
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57
A?r?
agf) _

at =0.

Forany m > 0, choose a finite set of pair-wise distinct points

{ﬂ'mo ( ,(n”o, (2)),7rm1 —( ,(n])l, (2)), 7Z'mm—( ,(n”m,/r(z) )}c AI(O A)XAI(O 7z)

in such a way that the determinant

is different from zero.

If j <m,weset

1 2
7 KA‘(OA)XAI(OH)((Zl’Zz)’(ﬂ.’(",)k’ ()))
(m)(21922 :Z 2 S
k=0 q)j(ﬂ-m,k)

i
= 2 0 )
k=0 (A | )Z (72' —zzirm’,{)2 PN\, .

is the Bergman kernel function into Al (0, A)x Al (0, 7[) The sum

where KA‘(O,A)xAl(o,zz) (’)

(GPTA/m)f (z,2,)= iaﬁf " (z,,2,)

2
(2)
'ﬂ.m,k ) q)j ﬂ.m,k

A N 1
”Z"j Z —)2 (”2_22

i = I PR

is then a generalized Padé-type approximant to the complex-valued function
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f(z,,2,):=sinh(z,z, ) into the bounded open set A'(0, 4)x A'(0,7) = C*.
If, for instance, m = 2, then there holds

(GPTAIm),(z,,z,)

_A°xt 1 . 1
2 o |22 @ 2o 2 o )2(. 2 @ )20
2 (A % ”2,0) (71' _22”2,0) 720 (A _21”2,1) (77 _22”2,1) 75

N 1
2 a )2[ 2 ol "o [
(A _21”2,2) (” _22”2,2) zy

under the constraint:

det| 1 73} 733 |#0.

1) (2)
l 7, 7y
Thus, for A =15 and
1 1
@ _ 2) _
70 —g’ 720 —g’
1 1
@ _ (2) _
7[2,1 __Z’ 7[2,1 _5’

1
w3 = -5 72 = ~1,1957901,
a generalized Padé-type approximant to f(z,,z, ) is given by the expression

(GPTA/2),(z,,2,)="761008.52

5400 B 576
(150 — z,)7(49.348022 — z,)> (100 +z,)*(29.608813 — z, )’

8
(50 + z,)* (9.8696044 +1.1957901 22)2}
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and indicatively we have

(GPTA4/2), [— 3,%) = -5.2279763 , while f[— 3,%) =1, (%j =5.2279719

and

(GPTA4/2), (— 3%} = —4.1422386 , while f(— 3%) =7, (%j =11.548739 .

Also, for A very small and such that

max |70 |7} < 4,
if
maxﬂﬂfo) | s ‘}< 7,
one has
(GPTA/Z)/, (0,¢)~ £(0,¢)= £,(t), forany te(-r,x).
However and in spite of these promising results, the best choice for the inter-
polation points

705 o seees T € A (0, 4)x A'(0, )

remains a central, open and difficult optimization problem of several complex variables.
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Open Questions

The Theory of Padé and Padé-type approximation to Fourier series has developed in
various directions and presently is far from complete. In this Section, I have included a collection
of general open problems in the hope that this may be one way to get them solved. Some of these
look simple. The fact that they are unsolved shows quite clearly that we have barely begun to
understand what really goes on this area of Approximation Theory, in spite of progress that has

been made.

In the one variable setting, the algebraic properties of the approximants remain to be

studied, as well as the existence and determination of (feasible) best interpolation points.

The algorithmic part should be similarly used. Some generalizations are also of interest,

the most important of which seems to be the non-periodic case.

The development of powerhouse techniques like integral representations managed to cut us
off from the roots of rational approximation. However, consideration of (composed) Padé-type
operators may lead to considerable functional analytic questions. For example, given any

operator

A} (C)— L*(C),

does there exist an infinite triangular interpolation matrix such that the corresponding sequence
of (composed) Padé-type operators converges to A with respect to some topology? (see Chapter
2, Section 2.2.) We also emphasize to the theoretical and practical importance of the Padé-type
approximation to the study of integral equations, by means of Padé-type approximate equations

(see Introduction of Chapter 2, page 165).

In the multidimensional case, there are several open theoretical problems.
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First, a complete knowledge of the Bergman kernel for an open bounded set () —C" is

indispensable for a detailed description of generalized Padé-type approximants to analytic
L* — functions in Q. The best choice of the orthonormal basis for OL* (Q) and of the generating
systems in Q) is also a general and difficult problem. Further, in analogy to the one variable case,
a fundamental functional analytic question is to know if; for every operator

A0} (Q) » oL’ (Q),

one can find an orthonormal basis for OL* (Q) and generating systems in ) such that the

corresponding sequence of generalized Padé-type operators for OL* (Q) converges to A with

respect to some topology.

Second, the extension and study of classical or L' — Markov’s inequalities into more
general families of compact subsets of C" is the component key for a comprehensive universal

discussion of generalized Padé-type approximation to continuous functions on compact sets
E < C". Moreover, the choice of a polynomial self-summable orthonormal basis for L* (E, ,u)

and of generating systems may lead to better approximations: their best choice is an important

and difficult question.

On the other hand, the introduction of generalized Padé-type operators for C” (E)

would probably be a useful tool in the approximate study of some special operators
Cc”(E)— C*(E).
Finally, the algebraic properties of these approximants and operators and their
algorithmic aspects should be studied.

As it is pointed out, all these ideas and methods can be extended into abstract functional
Hilbert spaces (Section 3.4). The existence of a self-summable countable orthonormal basis in a

functional Hilbert space H and of generating systems leading to the best generalized Padé-type
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approximation to elements to H is the main general question. The standard functional problem of

finding convenient and efficient generalized Padé-type approximants to a given operator
F:H—>H

is another interesting problem.

The application of the above Theory to other branches of Mathematics is also an open
question and probably the most fascinating, since the close interplay between the abstract and the
concrete is the most useful aspect and the main criterion for obtaining new and research

problems.
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